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ABSTRACT

We present an invert-and-edit framework to automatically
transform facial weight of an input face image to look thinner
or heavier by leveraging semantic facial attributes encoded in
the latent space of Generative Adversarial Networks (GANSs).
Using a pre-trained StyleGAN as the underlying generator,
we first employ an optimization-based embedding method to
invert the input image into the StyleGAN latent space. Then,
we identify the facial-weight attribute direction in the latent
space via supervised learning and edit the inverted latent
code by moving it positively or negatively along the extracted
feature axis. Our framework is empirically shown to produce
high-quality and realistic facial-weight transformations with-
out requiring training GANs with a large amount of labeled
face images from scratch. Ultimately, our framework can be
utilized as part of an intervention to motivate individuals to
make healthier food choices by visualizing the future impacts
of their behavior on appearance.

I. INTRODUCTION

People tend to be less motivated to adopt healthy lifestyles,
especially when the consequences of their behaviors are long-
term and inconspicuous. For example, young adults who
excessively consume diets which are high in calories and
added sugar may not develop type-2 diabetes until decades
later. Interventions designed to provide information are shown
to be ineffective in motivating meaningful behavior change
[L], [2]. On the other hand, Appearance-based behavioral
interventions, involving emphasizing the impacts of behavior
on appearance, have shown to be more effective in motivating
behavior changes than traditional information-provision based
interventions [1]. Among various forms of appearance-based
signals, facial weight (also called facial adiposity) has proven
to be a good predictor of health and health outcomes, including
obesity and type-2 diabetes [3]]. Thus, an automated tool for
simulating changes in facial weight of individuals based on
their dietary behavior of future food choices may prove to be
a useful feature in an appearance-based dietary intervention.

Existing approaches to transforming the facial weight of
face images typically employ computer graphics and image
processing techniques, such as 2D face morphing [3] and
3D face reconstruction and face reshaping [4]], [5]. Most of
these techniques only work well on face images in highly
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constrained conditions (e.g., frontal pose, neutral expression,
and plain background) [3] and often require manual efforts
[3]], [4] to generate optimal results, making them impractical
for societal-scale interventions.

To overcome the problems, we propose a framework based
on a recent invert-and-edit approach [6]], [7]] to incrementally
transform the facial weight of a real image by manipulating
the image in GAN latent space. By leveraging the latent
space of the state-of-the-art StyleGAN [§]] which encodes rich
semantics of human faces, the proposed framework is able
to effectively handle face images with diverse characteristics
in both constrained and unconstrained conditions, producing
visually compelling transformations without additional manual
efforts. Our work contributes to existing research by: (1)
exploring the task of progressive/regressive transformation
of facial weight by real image editing in latent space; (2)
empirically demonstrating the feasibility and practicality of
the proposed framework on diverse sets of face images.

II. RELATED WORK

In general, real image manipulations with GANs can be
categorized into two major approaches: image-to-image trans-
lation 9], [10]], [11] and image editing in latent space [12], [7].
In the former, the goal is to learn the mapping from an input
domain to an output domain [9], [10] or all mappings among
multiple domains [11]. Whereas, the latter exploits linear
interpolations between encoded images in GAN latent space
[13], [8] by uncovering and navigating along latent-space
directions which correspond to changes in visual attributes.
Supervised [6], [[7] and self-supervised [12] approaches have
been explored to find latent-space directions for image editing.

Our work extends beyond existing face image manipulation
work [14], [15], [L1], (6], [16l, [8l, [7] that typically focuses
on facial attributes, such as pose, gender, age, expression,
bangs, hair color, mouth opening, and eyeglasses. To our
knowledge, facial weight progression and regression via latent-
space editing has not been explored before. Our framework is
built on an invert-and-edit approach [17], such as InterFace-
GAN [7]], which involves obtaining inverted latent codes of
input images [18]], [19] and uncovering attribute directions
in latent space of pre-trained GANs via supervised learning
[6]], [7]]. We further contribute to prior research by empirically
evaluating various qualities of the generated images. Lastly,
our work and [3]] share similar goals, however, their approach
is mostly based on 3D face reconstruction and reshaping.
Compared to theirs, ours is more extensible, allowing for
multi-attribute transformations without retraining.



III. METHODOLOGY

Our proposed framework leverages the state-of-the-art pre-
trained image generation model StyleGAN [8]] to create highly
realistic facial-weight transformations. Specifically, our goal is
to use StyleGAN generator to produce an incremental change
in facial weight of an arbitrary input face image from its
manipulated latent code.

The framework consists of three main steps. First, the input
image is pre-processed to extract and align the face region
(see Section [II-A). This results in an aligned face image
with 1024 x 1024 resolution. Next, the aligned face im-
age is embedded into the StyleGAN manifold to produce a
corresponding latent representation (see Section [[II-B). We
use StyleGAN’s extended latent space W™ for embedding
and obtain the inverted latent code as a concatenation of
18 different 512-dimensional w vectors. Lastly, we extract
a 18 x 512 dimensional facial-weight attribute vector via
supervised learning, algebraically combine the latent code with
the extracted attribute vector, and pass the edited latent code
to StyleGAN generator to obtain the transformed image (see

Section [[II-C).

A. Pre-processing

In real-world applications, users may supply input images
that are not readily suitable for processing by our pipeline.
The input image may be of arbitrary resolution, may contain
multiple faces, or may not even have any faces. To tackle such
issues, we design a robust pre-processing pipeline consisting
of the following sequential steps:

Face Detection. We use Max-Margin Object Detection
(MMOD) model in the Dlib Python package, which is effective
in detecting faces from images even for those with some
degree of rotation. When multiple faces are detected, we only
keep the primary subject’s face (the largest bounding box).
The input image will then be cropped around the bounding
box of the detected face.

Facial Landmarks Extraction. We use a well-known 68-
facial landmark model implemented the Dlib Python package
to detect landmarks. Additionally, we use these landmarks
to calculate auxiliary parameters like eye-to-eye distance,
centroid of the eyes, etc., and compute the angle required for
applying face de-rotation.

Face De-rotation. To ensure a high-quality transformation
from our pipeline, the input face image is required to be at
a near zero degree in-plane rotation. For this, we warp and
transform the input face image to a coordinate space where:
faces are centered, eyes lie on a horizontal line, and size of
all the faces are approximately identical. Furthermore, we con-
struct a transformation matrix and apply affine transformation
to de-rotate the image.

Image Alignment. Lastly, to adjust a given face image
into StyleGAN’s canonical face position, we apply the same
data preparation steps used in Karras et al. [8] for padding,
shrinking, or up-scaling. After this step, we get an image with
1024 x 1024 resolution that is used for latent space embedding.

B. Latent Space Embedding

We adapt the state-of-the-art optimization-based embedding
method Image2StyleGAN [18] to invert real images to Style-
GAN latent codes. In particular, we further modify the ini-
tialization step and the loss functions to improve embedding
quality and run-time efficiency. Our embedding algorithm,
based on StyleGAN-Encoder [20], is shown in Algorithm E}

Algorithm 1: Improved Latent Space Embedding

Input: Pre-processed image I € R1024x1024x3,
gradient descent update F”(.); pre-trained
ResNet50 model; learning rate n

Qutput: Optimal latent code w*; embedded

image G(w) optimized via F’

w < ResNetb0([)

1088 min = OO

while iteration = 1 ... E do

L < Lygg(G(w), I) + Lypse(G(w), I)
w < w-n F'(Vy.L)
if L < loss,,;, then

w* = w

10SSmin = L

Initialization. First, we start by feeding the aligned face
image I to a pre-trained ResNet50 [21] model to extract
the initial latent code. This latent code, when passed through
the StyleGAN generator, gives a corresponding embedded
image G(w). We chose ResNet50 for its ability in learning
better low-level features and its faster rate of convergence
over VGG16 and VGG19. Compared to random initialization
or mean-face initialization [18]] strategies, this strategy tends
to produce inverted latent codes with higher reconstruction
quality (see supplementary material) and can quickly converge
within the specified number of epochs, achieving a good trade-
off between quality and run-time efficiency.

Optimization. Starting from an initial latent code w, we
aim to arrive at the closest possible approximation of the
input image in the latent space. We perform gradient descent-
based optimization using a weighted loss function over a fixed
number of iterations. Inspired by [18]], we use the same VGG
and pixel-wise MSE loss combination with the only difference
in the choice of the layers used for calculating the VGG loss.
Our proposed loss function is as follows:

w* = arg ming Avgg - Logg(G(w), I) + Amse - Linse(G(w), I) (D)

where w* is the optimal latent code; A,4q is the scalar used
to assign weight to the VGG perceptual loss; G(.) is the pre-
trained StyleGAN generator; w is the latent code to optimize;
I € R™ "3 is the input image; A, is the scalar used to
assign weight to the pixel-wise MSE loss.

To get optimal results, we set Aygg = 1, Appse = 1, n = 256
(i.e., I € R256%x256%3) when calculating VGG perceptual loss,
and n = 1024 (i.e., I € R1024x1024x3) when calculating pixel-
wise MSE loss.



For VGG loss, we use a single-layer loss involving the
conv3_2 layer (layer-9 of VGG16) instead of the multi-layer
loss involving convl_1, convl_2, conv3_2, and conv4_2
VGG16 layers in the original Image2StyleGAN. Visually, we
observed that multi-layer VGG loss did not significantly affect
the overall quality of the embedded face images. Formally, our
VGG perceptual loss L, 44 is defined as follow:

Lugg(G(w), T) = Nigan(G(w)) ~RBOIE @

where Ny is the number of scalars in the output of conv3_2
layer of VGG16; Fy is the feature output of conv3_2 layer of
VGG16.

We use L2-norm for measuring the difference between the
pixels. Thus the pixel-wise MSE loss is defined as:

1
Linse(G(w), 1) = [1G(w) = 1]I3 3)

where N is the number of scalars in the image (i.e., N =
nxXnx3).

C. Facial-Weight Transformation

The final step in our framework is to manipulate the optimal
latent code w* so that it can be fed into the StyleGAN gen-
erator to produce the desired facial-weight transformation. To
achieve that, we adopt a general approach similarly employed
in [6l], [7], which consists of the following steps:

Features Extraction. First, we aim to uncover a hyperplane
in the StyleGAN latent space that separates samples into two
facial-weight categories, i.e., thin and heavy. This is achieved
by training a supervised facial-weight attribute classifier.

We constructed a thin/heavy labeled images dataset by gener-
ating 10K synthetic face images along with their latent codes
using StyleGAN. After discarding images with noisy artifacts
and irregularities, 9.9K images (StyleGAN-9.9K) were kept.
Next, each image was manually assigned either a thin (4K)
or a heavy (5.9K) class label by one of the co-authors of
this paper. Using the manually labeled dataset, we trained a
logistic regression classifier to predict a thin/heavy label g
from a 18 x 512 dimensional latent code w*.

_ 1
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g=f(w") 4)

where a vector parameter a is the desired facial-weight at-
tribute vector representing the attribute direction in w*.

As StyleGAN latent space is not perfectly disentangled, ma-
nipulating w* along the facial-weight direction ¢ may inad-
vertently affect other correlated attributes. To better control
the transformation [7], [6], we perform projection subtraction
to find a projected facial-weight attribute vector a — proj,a
where z is an attribute direction to be disentangled from a.
Given n correlated directions; X = {1, z, ..., Z,, }, we repeat
the projection subtraction one direction at a time.

Latent Space Manipulation. Given the projected facial-
weight attribute vector, we manipulate the facial-weight at-
tribute of the latent code w* as follow:

Wegir =W + - a &)

where w?,, is the edited latent code which when passed
through the StyleGAN generator produces transformed im-
ages, w* is the optimal latent code, « is the scalar used to
control the degree of transformation towards thinner (o < 0)
or heavier (o > 0) faces, and a is the 18 x 512 dimensional
projected facial-weight attribute vector. We only apply the
editing operation to the first 8 layers of w* as we found them
to be the most pertinent layers to facial weight.

IV. EXPERIMENTS

To measure the performance of our framework, we present
experimental evaluations on two sets of face images with
varied visual attributes. First, we quantitatively measure: (i)
the reconstruction quality of the latent space embedding; and
(ii) the visual quality and identity-preserving quality of the
transformations. Then, we visually examine examples of trans-
formed images in a qualitative evaluation. Lastly, we assess the
realism of the transformations through human evaluation.

A. Experimental Setup

Datasets. We manually selected high-resolution face images
of real people from two existing datasets: 100 images from
Chicago Face Database (CFD-100) [22] and 100 images from
WIDER FACE test set (WIDER-100) [23]], as our test datasets.

The original CFD dataset contains images from 597 subjects of
Asian, Black, Latino, and White ethnic backgrounds. All CFD
images were taken in a constrained condition, i.e., straight
frontal pose, neutral facial expression, and plain background.
Our CFD-100 samples comprise 30 Asian, 20 Black, 30
Latino, and 20 White subjects with a balanced gender dis-
tribution across all groups.

In contrast, the WIDER FACE test images were taken in
unconstrained conditions (i.e., “in the wild”) with a wide
variety of scales, poses, occlusions, expressions, makeups,
and illuminations. Additionally, the 100 selected images were
manually annotated by one of the co-authors to identify at-
tributes such as gender, age group, ethnicity, facial expression,
and angle. The samples consist of subjects with near-uniform
splits of genders (50 female and 50 male), age groups (45
young and 55 middle-age or older), ethnicity (55 White and
46 non-White), expressions (34 neutral and 66 non-neutral),
and angles (56 frontal and 44 non-frontal). We expect CFD-
100 to produce better overall results than WIDER-100.

Implementation Details. For all our experiments, we used
StyleGAN trained on 1024 x 1024 resolution Flickr-Faces-HQ
images (StyleGAN-FFHQ) [8].

In the latent space embedding step, we used a pre-trained
ResNet50 encoder, trained on a dataset of 20k StyleGAN
generated face images [20], to obtain the initial latent code.



Next, we used Adam optimizer with the following optimal
hyperparameters: learning rate n = 0.01, 5, = 0.9, 82 = 0.99,
and € = le~%. Moreover, we set the number of iterations
E = 1000 (Algorithm [T)). On average, it took approximately
1.25 minutes to invert one image on a 32GB Nvidia Tesla
V100 GPU, compared to 7 minutes when using [18].

Prior to the facial-weight transformation step, we examined
potential entanglements between the facial-weight attribute
and other facial attributes. Using 200K labeled face images
from CelebA dataset [24] with age, gender, and mouth-
opening expression attributes, we trained a binary classifier
for each attribute. Given the attribute classifiers, we followed
similar procedures in Section to uncover the correspond-
ing attribute directions in StyleGAN latent space and measured
their correlations with the facial-weight direction using cosine
similarity (see supplementary material for details). Next, we
performed projection subtraction to disentangle the facial-
weight attribute direction from the mouth-opening expression
direction (i.e., the most correlated attribute) and used the
projected direction for editing.

B. Quantitative Evaluation

Evaluation Metrics. Firstly, to measure the reconstruction
quality of the embedded images, we use two standard per-
ceptual metrics: peak signal-to-noise ratio (PSNR € [0, c0)),
structural similarity (SSIM € [0, 1)), and perceptual similarity
metric with AlexNet (LPIPS € [0, 1]) [25]]. Higher PSNR and
SSIM scores suggest better reconstruction quality, whereas
higher LPIPS scores indicate lower reconstruction quality.
Among these metrics, LPIPS is most consistent with human
perception [25]. For each test image, we obtained an aligned
image output after the pre-processing step and computed the
scores for all 200 aligned-embedded image pairs.

Next, we measure the perceptual quality and the identity
preservation aspects of the transformations using Fréchet In-
ception Distance (FID € [0, 1]) and Openface face recognition
scores (FR € [0,4]) [26], respectively. In general, lower
FID scores indicate higher visual quality. Similarly, lower
FR scores suggest that the subject’s original identity is more
preserved after the transformation. For each dataset, we first
generated 5K transformed images from 200 test images using
50 different o values in [-5, 5] range. Then, we computed
the FID between a reference set of 200 embedded images and
the generated set of 5K images. For FR, we generated four
thinner/heavier transformed images using o = {—5,—3,3,5}
for each test image and calculated the scores for 800 aligned-
transformed image pairs from both datasets.

Results. We first examine the reconstruction quality by mea-
suring the similarity between the input real images and the em-
bedded images. As shown in Table[l] our framework produced
better quality embedded images for CFD-100 dataset than
WIDER-100 dataset according to all metrics. The results are as
expected since CFD-100 data are more visually standardized
and less noisy than WIDER-100 data.

TABLE I
QUANTITATIVE EVALUATION RESULTS

Latent Space Embedding Transformation

PSNR (dB) () SSIM (1) LPIPS (}) FID (}) FR (})
CFD-100 32.988 0764 0213 15392 0218
WIDER-100 31.625 0747 0312 33.98 0.392

Next, the mean FID scores in Table [I] indicate that the
transformed CFD-100 images have higher perceptual quality
than those of WIDER-100. For identity preservation, we first
excluded cases in which aligned images failed to be recon-
structed properly by manually checking candidate embedded
images with FR > 1. As a result, we removed 8 poorly
embedded images and 40 corresponding transformed images
from WIDER-100. No such failure cases were found in CFD-
100 images. After data filtering, the mean FR scores in
Table [I| suggest that the identity of CFD-100 images are more
preserved after the transformations than those of WIDER-100.
Overall, the results are consistent with our expectation.

C. Qualitative Evaluation

Facial-Weight Transformations. Fig. (1| displays eight se-
lected samples of original 1024 x 1024 resolution input images
(column 1) from CFD-100 (rows 1-4) and WIDER-100 (rows
5-8) datasets and their corresponding embedded (column 4)
and transformed images (columns 2-3 and 5-6). As we can see,
our framework generates high quality and realistic results. Not
only does it produce progressive/regressive changes in specific
features (i.e., cheeks, chin, and neck) and facial characteristics
(i.e., mouth curvature) during weight gain/loss [3]], but it also
preserves their identity and ethnicity. These realistic transfor-
mations were enabled by the encoded information in Style-
GAN latent space without the need for explicit face reshaping
functions [S] (see supplementary material for comparisons).
Moreover, the latent facial-weight direction is shown to be
independent of the natural face shapes. For instance, subjects
with a square face shape (rows 6 and 8) were transformed to
look heavier without having their faces becoming completely
round. Additionally, it is able to generalize for different face
angles, e.g., frontal (rows 1-4), 3/4 view (rows 5-7), and
upward tilt (row 5). Lastly, a variety of facial expressions are
well preserved during the transformation, e.g., neutral (rows
1-4), smiling (rows 5-6), and laughing (row 7). More examples
can be found in the supplementary material.

Failure Cases. Fig. [2] shows three examples of common failure
cases that highlight the limitations of our framework. The first
image depicting a subject with a thinner-transformed (o = —3)
side-profile face pose suggests the StyleGAN-FFHQ’s limit in
generalizing beyond frontal and 3/4-view face poses, resulting
in facial deformity. One way to handle this out-of-distribution
shapes issue is to augment the training data of StyleGAN-
FFHQ with more diverse face angles. Next, blob-like artifacts
tend to appear in approximately 5% of all generated faces,
especially those with a large o value (e.g., @ = —5 in the
second image). This inherent problem has been improved in
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Fig. 1. Facial-Weight Transformation Results. Columns 1 and 4 show the original and the embedded images, respectively. Columns 2-3 and 5-6 display the
thinner (« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively. Rows 1-4 and 5-8 correspond to samples taken from CFD-100

and WIDER-100 datasets, respectively. Zoom in for better resolution.

StyleGAN2 [27]. The last image shows that, in some small
cases, facial weight is still entangled with a mouth-opening
expression even though projected attribute vector was already
used in editing. Lastly, we observed noticeable artifacts and
feature distortions (e.g., elongated or tilted-up noses) in some
images, e.g., row 1 in Fig.[I}

Fig. 2. Examples of common failure cases such as facial deformity, blob
artifacts, and entangled features, respectively.

D. Human Evaluation

Setup. We conducted a crowdsourced user study on Amazon
Mechanical Turk (AMT) to investigate how humans perceive
the realism of our facial-weight transformations. First, we
generated thinner (o« = {—3, —5}) and heavier transformations
(o = {3,5}) for a set of 200 face images (100 StyleGAN-
generated and 100 real face images). Given this set of images,
we submitted 200 corresponding human intelligence tasks
(HITs) to AMT. Each task requires AMT workers to sort a
randomly shuffled sequence of five images, i.e., the subject’s
original image and four of his/her generated images by facial
weight from the thinnest to the heaviest (similar to those
in Fig. [TI). Each task was assigned to three AMT workers,
resulting in 600 responses. We further discarded 30 responses
due to data input errors made by some workers.



Results. According to 570 crowdsourced responses, our facial-
weight transformed images are highly realistic. A vast majority
of responses (71.4%) gave the exact ordering of image se-
quences. In addition, 87.8% of responses correctly identified
the thinner transformed images as having lower facial weights
than the original subjects. Likewise, 85.2% of responses found
the heavier transformed images to be of higher facial weights
than the original images. Lastly, small percentages of incorrect
responses (13.6% - 15.3%) show the difficulty in distinguish-
ing similar-weight faces, e.g., « = 3 vs. o = 5.

V. CONCLUSION

Motivated by appearance-based health intervention, we pro-
pose a framework for transforming facial weight of real images
by inverting and editing the input images in StyleGAN latent
space. Next, we conducted comprehensive experiments to
evaluate the performance of our framework using two face im-
ages datasets comprising subjects from a diverse demographic
backgrounds and visual attributes. The results suggest that
not only is our framework capable of producing facial-weight
transformed images with high visual quality and realism, it is
also effective in preserving the identity and characteristics of
subjects after the transformations.
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APPENDIX

In this section, we present additional analyses and results
supplementary to the main paper, including:

« Quantitative and qualitative analyses of the ResNet50 and
mean-face initialization strategies used at the start of the
latent space embedding step

« Analysis of potential entanglement between the feature-
weight attribute and others

o Additional transformation results

o Comparisons between the results generated by our frame-
work and deep shapely portraits [3]]

A. Initialization Strategies

We provide additional analysis and examples to compare the
reconstruction quality of embedded images using ResNet50
(used in the main paper) and mean-face (MF) initializa-
tion strategies. Quantitatively, the ResNet50 strategy produces
slightly higher LPIPS scores than MF for images from both
datasets according to Table |m However, PSNR and SSIM
scores of MF are equal or slightly higher than ResNet50 in
both datasets. Given that LPIPS is more consistent with human
perceptions than the other metrics [23], We chose ResNet50 as
the initialization strategy in the latent space embedding step.

There are some cases where one strategy was able to generate
marginally better results than the other and vice versa. For
examples, in Fig. 3] MF is more accurate in reconstructing a
ponytail (row 1) and lip shape (row 2) of CFD-100 images
than ResNet50, whereas ResNet50 is better at reconstructing
some edge cases (rows 3-4) in WIDER-100 than MF.

TABLE I
RECONSTRUCTION QUALITY SCORES FOR RESNET50 AND MEAN-FACE
INITIALIZATION STRATEGIES

CFD-100
PSNR (dB) (1) SSIM (1) LPIPS (})
ResNet50 32.988 0.764 0.213
Mean-Face 33.023 0.768 0.216
WIDER-100
ResNet50 31.625 0.747 0.312
Mean-Face 31.580 0.747 0.315

B. Feature Entanglements

We provide detailed description on the feature entanglement
analysis from which the projected facial-weight vector was
derived. In the main paper, we manually annotated 9.9K
images (StyleGAN-9.9K) with facial-weight labels in order
to extract the facial-weight direction in latent space via
supervised learning. To investigate the feature entanglement
problem, we measure correlations between the facial-weight
direction and other facial attribute features.

To achieve that, we followed similar procedures used in
extracting the facial-weight vector. We first trained a binary
classifier to predict age, gender, and mouth-opening expression

Fig. 3. Comparisons between ResNet50 and mean-face initialization strate-
gies. Columns 1-3 show the original, ResNet50-embedded, and mean-face-
embedded images, respectively. Rows 1-2 and 3-4 display images from CFD-
100 and WIDER-100 datasets, respectively. Zoom in for better resolution.

labels (one for each attribute). We selected relevant labeled
face images from CelebA dataset [24], resulting in 3 sets of
training data; each contains roughly 200K labeled images.
For each set, we created a 0.875/0.125 train/test split and
trained an attribute classifier by fine-tuning MobileNet (pre-
trained on ImageNet). The accuracy scores of age, gender,
and mouth-opening classifiers are 0.8863, 0.9353, and 0.8196,
respectively. Next, we used the trained classifiers to assign
the corresponding labels to StyleGAN-9.9K images. Then, we
extracted the three attribute vectors using logistic regression
trained on labeled StyleGAN-9.9K images (with 0.7/0.3 train-
test split). The accuracy scores of the logistic regression
classifiers for facial-weight, age, gender, and mouth-opening
expression directions are 0.7993, 0.8034, 0.8312, and 0.7532,
respectively.

TABLE III
CORRELATIONS BETWEEN ATTRIBUTE DIRECTIONS

Facial weight  Gender Age Mouth open
Facial weight 1.000 -0.015  -0.028 0.157
Gender - 1.000 -0.005 -0.060
Age - - 1.000 -0.117
Mouth open - - - 1.000

Finally, we measured cosine similarity between the attribute
vectors. As we can see in Table [T, mouth-opening expression



is more correlated with facial weight than the other attributes.
As shown in Fig. [} the subjects’ mouths are more opened
when the facial-weight attribute direction was not disentangled
with the mouth-opening expression direction (column 3), com-
pared to when projection subtraction was performed (column
2).

Fig. 4. Feature entanglement with (column 2) and without projected direction
(column 3) at o = 5 given the input images in column 1

C. Additional Transformation Results

We present additional examples of facial-weight transforma-
tion results supplementary to the results in the main paper.
Fig. [Bl{7] and [B{I0] display additional transformation results for
subjects in CFD-100 and WIDER-100 datasets, respectively.
CFD-100 examples aim to show more variations in facial
features, face shapes, and body weights within the same
ethnicity, whereas WIDER-100 examples illustrate various
facial expressions, face angles, and occlusions.

Fig. [TTHI3] show additional failure cases of face deformities,
blob artifacts, and entanglement between facial weight and
mouth-opening, respectively. Firstly, we can see in Fig. [I]
that face deformities are caused by poor reconstruction quality
(rows 1 and 4), occlusions such as hair covering face (row
2) and eyeglasses (row 3), and side-profile poses (rows 5-
6). Secondly, Fig. [I2] displays occurrences of blob artifacts in
different transformation steps, especially when o < 0. Lastly,
Fig. [[3]illustrate variations of mouth-opening expressions that
correlate with heavier transformations (o > 0). As we can see,

navigating along a positive facial weight direction (o > 0)
sometimes causes the subject’s mouth to open slightly.

D. Comparisons with Deep Shapely Portraits

We provide additional results to qualitatively compare our
framework with deep shapely portraits (DSP) [3]. DSP is
a recent deep-learning based method utilizing sophisticated
computer graphics techniques such as 3D face reconstruction,
face reshaping, and warping to automatically transform face
shapes of portrait images. As we can see in Fig. [4] and [T3]
the main advantage of DSP (row 2) over our framework (row
3) is in its ability to precisely extract and manipulate face
shapes while preserving all other visual elements of the input
images (row 1) as it does not recreate the whole image. Even
though our framework was not able to accurately reconstruct
accessories (e.g., earrings, face tattoo, tassel) and backgrounds
without trading computation time for quality, the results
demonstrate our framework’s effectiveness in preserving the
subjects’ identity and facial expressions and generating face
shapes closely resembling those of DSP, without relying on
3D models and explicit face reshaping functions.



Fig. 5. Additional transformation results for Asian subjects in CFD-100. Columns 1 and 4 show the original and the embedded images, respectively. Columns
2-3 and 5-6 display the thinner (o« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively.
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Fig. 6. Additional transformation results for Black and Latino subjects in CFD-100. Columns 1 and 4 show the original and the embedded images, respectively.
Columns 2-3 and 5-6 display the thinner (o« = —5 and ov = —3) and heavier (o = 3 and o = 5) transformations, respectively.
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Fig. 7. Additional transformation results for Latino and White subjects in CFD-100. Columns 1 and 4 show the original and the embedded images, respectively.
Columns 2-3 and 5-6 display the thinner (o« = —5 and o = —3) and heavier (o« = 3 and a = 5) transformations, respectively.



Fig. 8. Additional transformation results for subjects in WIDER-100. Columns 1 and 4 show the original and the embedded images, respectively. Columns
2-3 and 5-6 display the thinner (o« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively.



Fig. 9. Additional transformation results for subjects in WIDER-100. Columns 1 and 4 show the original and the embedded images, respectively. Columns
2-3 and 5-6 display the thinner (o« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively.
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Fig. 10. Additional transformation results for subjects in WIDER-100. Columns 1 and 4 show the original and the embedded images, respectively. Columns
2-3 and 5-6 display the thinner (&« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively.



Fig. 11. Additional failure cases of face deformities. Columns 1 and 4 show the original and the embedded images, respectively. Columns 2-3 and 5-6 display
the thinner (&« = —5 and @ = —3) and heavier (o« = 3 and a = 5) transformations, respectively.
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Fig. 12. Additional failure cases of blob artifacts. Columns 1 and 4 show the original and the embedded images, respectively. Columns 2-3 and 5-6 display
the thinner (&« = —5 and a = —3) and heavier (o« = 3 and o = 5) transformations, respectively.
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Fig. 13. Additional failure cases of mouth-opening feature entanglement. Columns 1 and 4 show the original and the embedded images, respectively. Columns
2-3 and 5-6 display the thinner (&« = —5 and o = —3) and heavier (o« = 3 and o = 5) transformations, respectively.



18

Fig. 14. Comparisons with deep shapely portraits. Columns 1 and 6 show six original images shown in Fig. 1 in Xiao et al.’s study [5]]. Rows 1-3 display
the original images (row 1), images generated by deep shapely portraits (row 2), and ours (row 3), respectively.

Fig. 15. Comparisons with deep shapely portraits. Columns 1 and 6 show six original images shown in Fig. 6 and 7 in Xiao et al.’s study [3]. Rows 1-3
display the original images (row 1), images generated by deep shapely portraits (row 2), and ours (row 3), respectively.
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