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Abstract
Next-basket recommendation (NBR) is a recommendation task that predicts a basket
or a set of items a user is likely to adopt next based on his/her history of basket adoption
sequences. It enables a wide range of novel applications and services from predicting
next basket of items for grocery shopping to recommending food items a user is
likely to consume together in the next meal. Even though much progress has been
made in the algorithmic NBR research over the years, little research has been done
to broaden knowledge about the evaluation of NBR methods, which is largely based
on the offline evaluation experiments and binary relevance paradigm. Specifically, we
argue that recommended baskets which are more similar to ground truth baskets are
better recommendations than those that share little resemblance to the ground truth,
and therefore, they should be granted some partial credits. Based on this notion of
non-binary relevance assessment, we propose new evaluation metrics for NBR by
adapting and extending similarity metrics from natural language processing (NLP)
and text classification research. To validate the proposed metrics, we conducted two
user studies on the next-meal food recommendation using numerous state-of-the-art
NBRmethods in both online and offline evaluation settings. Our findings show that the
offline performance assessment based on the proposed non-binary evaluation metrics
is more representative of the online evaluation performance than that of the standard
evaluation metrics.
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1 Introduction

Next-basket recommendation (NBR) task is a type of sequential recommendation task
(Zimdars et al. 2001) which aims to predict a collection or set of items (also known
as basket) a user is likely to adopt at the next time step given his or her past sequence
of baskets. The NBR task, first popularized by Rendle et al. (2010), has increasingly
become an important area of research thanks to its prevalence in numerous real-world
applications. Not only has NBR models been used predominantly in predicting a
shopping basket for the customer’s next purchase (Wang et al. 2015; Yu et al. 2016;
Jannach and Ludewig 2017; Wan et al. 2018; Ying et al. 2018; Hu and He 2019; Le
et al. 2019; Faggioli et al. 2020; Hu et al. 2020; Yu et al. 2020; Qin et al. 2021), it
has also been applied to predict a variety of item sets, e.g., a set of food items for
the next-meal food consumption (Bharadhwaj et al. 2018; Liu et al. 2019), a music or
video playlist for the next listening/watching session (Chen et al. 2012; Hidasi et al.
2015; Kapoor et al. 2015; Jannach and Ludewig 2017; Kotzias et al. 2019; Ren et al.
2019), and a sequence of point of interests (POIs) for the next visiting period (Brilhante
et al. 2013; Cheng et al. 2013; Ying et al. 2018; Kotzias et al. 2019). Compared to
a conventional top-n recommendation task, which ignores sequential information in
past item adoptions and only aims to infer general user preferences to recommend new
items, NBR focuses on a time-specific prediction of a basket of items that a user would
like to adopt next. Furthermore, the baskets may comprise both new and previously
adopted items.

Although several novel NBRmodeling approaches, including deep neural networks
(DNNs)-based methods (Yu et al. 2016; Wan et al. 2018; Ying et al. 2018; Hu and He
2019;Le et al. 2019;Yu et al. 2020;Qin et al. 2021), have been proposed in recent years,
little attention has been given to the NBR evaluation research. Following a troubling
trend in the recommender systems’ reproducibility (Dacrema et al. 2019), Li et al.
found that limited progress has been made when comparing the offline performance
of several state-of-the-art (SOTA) NBR methods and simple item popularity-based
baselines (Li et al. 2021). Yet, several methodological issues in NBR evaluation have
remained unexplored. Firstly, most NBR evaluations employ an offline evaluation
method, commonly used in the recommender systems research at large, in which a
dataset is split into the train/test partitions. Themodel is trained on the training set, and
its prediction accuracy is evaluated against the test set as if the recommendations were
shown to the users. Although offline evaluation is a valuable tool in the development
of recommendation algorithms, its predictive power has been questioned (Cremonesi
et al. 2012; Beel et al. 2013; Rossetti et al. 2016) and online evaluations and user
studies (Shani and Gunawardana 2011; Ricci et al. 2015) still remain the most reliable
methods that provide the strongest evidence of the recommender systems’ performance
by accounting for human factors. To our knowledge, little research has evaluated the
performance of NBR methods in the online evaluations and user studies.

Secondly, offline evaluations of NBR methods typically utilize information
retrieval-based metrics, such as precision, recall, and normalized discounted cumu-
lative gain (nDCG) to measure the model accuracy (Rendle et al. 2010; Wang et al.
2015; Yu et al. 2016; Bharadhwaj et al. 2018; Liu et al. 2019; Faggioli et al. 2020; Qin
et al. 2021). These metrics are built on the binary relevance assessment in which rec-
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Fig. 1 Not all baskets are equal: an illustrative example

ommended items are considered relevant if they match exactly to ground truth items
in the test set, whereas those that differ from the ground truth are treated as irrelevant
recommendations. In the NBR context, this means that item baskets with the same
number of relevant recommendations are judged to be equal in quality. However, much
like Frumerman et al.’s claim (Frumerman et al. 2019) “not all rejected items in the
top-n recommendation are equally bad,” we assert that not all recommended baskets
in the offline NBR evaluation should be treated the same and partial credits should be
proportionately given to those which are similar to the ground truth baskets to further
distinguish their quality.

To illustrate our claim, let us consider the following toy example comprising a
reference basket (ground truth) of 3 items and recommended baskets A, B, and C in
Fig. 1. Aswe can see, all three baskets contain one exact-matching item (awhite circle)
given the reference basket. As a result, these recommended basket will be considered
of equal quality under the binary relevance assessment paradigm. On the other hand,
by using a non-binary assessment that considers the similarity between shapes (i.e.,
circle, triangle, star, and cross) and colors (i.e., white and black) of items, basket A is
themost similar to the reference basket since its two other items are more similar to the
ground truth, i.e., black versus white stars and 4-pointed versus 5-pointed stars, than
those of baskets B and C . Likewise, basket B is more similar to the reference basket
than basket C . With this illustration, one can surmise that a user would be most satisfy
with the recommended basket A and the non-binary-based evaluation will likely offer
a more accurate performance assessment than the binary relevance-based evaluation.

This study aims to expand current knowledge about the evaluation of NBRmethods
in the food recommendation domain (Elsweiler et al. 2022) by investigating: (1) the
use of various similar metrics, including those utilized in natural language processing
(NLP) tasks, for the non-binary relevance assessment; (2) the performance of different
NBR methods as measured by the non-binary-based metrics; (3) the effectiveness of
different NBR methods in an online next-meal recommendation user study; and (4)
the correspondence between user preferences for recommended item baskets and the
non-binary relevance assessment of the basket quality.

To that end, we first operationalize the non-binary relevance assessment of item
baskets in terms of aggregated similarity of individual items in the recommended
and reference baskets. In particular, we consider two main approaches for measur-
ing pairwise item similarity based on textual content and categorical tags. For the
content-based approach, we adapt and extend several text similarity metrics widely
used in NLP research (Papineni et al. 2002; Lin 2004; Zhang et al. 2020), such as
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machine translation, text summarization, and text generation, to measure pairwise
item similarity. Next, for the tag-based approach, we propose hierarchical evaluation
metrics utilizing the hierarchy of tags describing categorical information about items.
Then, we incorporate a best matching principle to derive the basket-level assessment
of non-binary relevance.

Given the content-based and hierarchical evaluationmetrics for measuring pairwise
item similarity, we pose our first research question as follows:

RQ1: How do different similarity metrics correspond to human similarity per-
ception of items?

To answerRQ1,we conduct user studies to collect human judgments of item similar-
ity. Particularly, we are interested in two types of human perceptions: non-personalized
and personalized similarity judgments. Non-personalized item similarity judgments
are exercised when human annotators objectively assess the similarity between a pair
of items exclusive of their own preference. In contrast, personalized item similarity
judgments are employed when human annotators subjectively evaluate the similarity
between a pair of itemswith respect to the annotators’ context. The distinction between
the two types of judgments is important in the food recommendation domain as the
former seeks to answer the questions “how similar are food items A and B?” or “how
likely is food item A a substitute for food item B in general?,” whereas the latter aims
to answer the question “how likely is food item A a substitute for food item B givenmy
(the annotator’s) meal context C?” which involves personal preference. We describe
the two user studies for non-personalized and personalized similarity judgments in
Sects. 4.1 and 4.2.2, respectively.

Next, we carry out an online next-meal recommendation user study, described in
Sect. 4.2, to assess the effectiveness of various NBR methods. Fifty participants take
part in an online food recommendation study in which each participant is provided
with a number of algorithmically generated food item baskets for their next-meal con-
sumption tailored to his/her past consumption data from multiple NBR algorithms,
i.e., a within-subject experiment design. The participant then indicates his/her prefer-
ence for each recommended item in the baskets. Specifically, the user study aims to
answer the following research questions:

RQ2: How do different evaluation metrics correspond to the real users’ prefer-
ences for item baskets?

RQ3: To what extent do user preferences for item baskets differ across different
NBR algorithms?

Lastly, given the findings from RQ1 - RQ3, we conduct an offline experiment
to investigate the performance of NBR methods based on the non-binary relevance
assessment to answer the following research question:

RQ4: What is the offline performance of different NBR algorithms as measured
by the non-binary evaluation metrics?

Findings from this study will validate the non-binary relevance assessment
paradigm in the NBR evaluations, especially the applicability of various content-based

123



Non-binary evaluation of next-basket food recommendation

and hierarchical evaluation metrics. Furthermore, the research will provide an empir-
ical evidence to inform the performance of several SOTA methods in the next-meal
recommendation task from both the offline and online evaluation methods and bridge
the gap between the binary and non-binary paradigms in the offline NBR evaluation.

Our work makes the following contributions to the NBR research area. Firstly, we
propose several content-based and hierarchical evaluation metrics by adapting and
extending relevant metrics from the NLP and text classification research to measure
similarity between the ground truth and the recommendations at the item and basket
levels. To date, we are the first to utilize suchmetrics in the non-binary relevance-based
NBR evaluations.

Secondly, we introduce a few novel experimental protocols, including: (1) a
queuing-based crowdsourcing task design for efficiently collecting pairwise item sim-
ilarity judgments for the basket-level comparisons and (2) an experimental pipeline
comprising online food logging, NBR algorithms, and Google Form, for conducting
an online user study without the reliance on existing next-meal food recommender
systems.

Thirdly, we show the validity of the NLP-based and hierarchical evaluation metrics
in operationalizing the non-binary relevance assessment in theNBRevaluations. These
metrics correspond more closely to human perceptions of similarity and preference
than standard binary-basedmetrics, such as precision, recall, and nDCG. Furthermore,
we uncover differences between non-binary-based metrics in their correlations with
non-personalized and personalized similarity judgments and user preference judg-
ments. Specifically, the metrics which correlate more strongly with non-personalized
similarity judgments do not necessarily produce the same results with personalized
similarity and preference judgments.

Lastly, our work is one of the earliest studies (Shao et al. 2021) that examine the per-
formance of NBR methods through an online-recommendation user study. Consistent
with the offline evaluation results, the participants in the online next-meal recom-
mendation study generally prefer item baskets recommended by repeat-consumption
aware NBR algorithms than those of sequential recommenders. Our findings are also
in agreement with Li et al.’s analysis (Li et al. 2021) which identifies the limita-
tions of several advanced NBR algorithms in capturing the trade-off between the
repeat and explore items in the recommendations. Through both the offline and online
experiments, we have also identified the non-binary-based metrics which are highly
indicative of the user preferences in an online recommendation setting. These metrics
will thus be useful for evaluating future online recommendation results.

The rest of the paper is organized as follows. We first survey the related work in
Sect. 2. Next, we present the dataset, algorithms, and evaluation metrics used in this
study, and the performance of the NBR algorithms on standard metrics as baselines in
Sect. 3. Then, we describe the user studies conducted to answer the research questions
in Sect. 4 and present the results of the data analysis in Sect. 5. Lastly, we discuss the
limitations and future directions of our research and conclude the paper in Sects. 6
and 7, respectively.
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2 Related work

We review related work from two relevant research areas: (1) offline and online
evaluation of recommender systems and (2) similarity metrics and non-binary rel-
evance, while non-accuracy-based evaluation metrics (Ge et al. 2010), such as
diversity/coverage, non-redundancy, representativeness, etc., are all useful in measur-
ing the user satisfaction of recommender systems and have been actively investigated
by the recommender systems community (Ricci et al. 2015; Shani and Gunawardana
2011). Examining the relationships between those metrics and non-binary-based met-
rics is an interesting topic which we leave for future work.

2.1 Offline and online evaluations

Algorithmic recommender systems research has long been focusing on achieving
state-of-the-art (SOTA) performance as measured by accuracy-based metrics, such
as precision, recall, and nDCG, in offline evaluation settings. However, results from
various studies have shown that employing the best offline algorithms does not always
lead to better recommendations in a live environment (Cremonesi et al. 2012;Beel et al.
2013; Garcin et al. 2014; Rossetti et al. 2016). Since the performance of recommender
systems in production is greatly affected by human factors and dynamic environments,
online evaluation and user study are indispensable and complementary tools to offline
evaluation.

Over the years, several online evaluations and user studies have been conducted
mostly in the top-n recommendation evaluations under varying settings. First, a few
works have investigated the consistency between results from offline and online eval-
uations using in live recommender systems for top-n movie (Cremonesi et al. 2012;
Rossetti et al. 2016), news (Garcin et al. 2014), and research paper (Beel et al. 2013,
2016) recommendations, inwhich contradictory results fromoffline and onlinemetrics
have been observed. Beyond comparing the offline and online experimental results,
other works (Maksai et al. 2015; Krauth et al. 2020) have examined the predictive
power of accuracy and non-accuracy based offline metrics in determining online per-
formance under various conditions. In electronic commerce (e-commerce), researchers
have performed A/B tests to further validate the performance of promising recom-
mendation methods from offline experiments in real recommender systems, including
music (Domingues et al. 2013), video (Symeonidis et al. 2020), product (Kaminskas
et al. 2015), and tour packages (Peska and Vojtas 2020) recommendations. When real
systems are not available, user studies have been conducted to evaluate the accuracy
of recommendation methods and collect data about user preferences (Yao and Harper
2018), qualitative responses, and feedback from real users (Braunhofer et al. 2013;
Kamehkhosh and Jannach 2017) or domain experts (Messina et al. 2019; Färber and
Sampath 2020).

In food recommender systems, most performance evaluations have been done
almost exclusively in offline experiments (Trattner and Elsweiler 2017). Online eval-
uations and user studies in the food recommendation research have been conducted in
the past few years (Elsweiler et al. 2022), mostly in the top-n cooking recipe recom-
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mendation domain (Ge et al. 2015; Massimo et al. 2017; Musto et al. 2020; Trattner
and Jannach 2020; Hauptmann et al. 2021). While most food and recipe recommenda-
tion studies have been conducted with study participants in short single experimental
sessions or through online crowdsourcing platforms (Achananuparp andWeber 2016;
Musto et al. 2020; Trattner and Jannach 2020), some studies, especially on the health-
aware recipe recommendation, have employed a more rigorous controlled experiment
design which took place over several weeks (Achananuparp et al. 2018; Hauptmann
et al. 2021).

Lastly, Shao et al. (2021) recently conducted an online user study to evaluate course
recommender systems with college students. As their multi-semester course recom-
mendation is formulated as the NBR problem, the user study is considered one of the
earliest to be performed in the context of NBR evaluation.

2.2 Similarity metrics and non-binary relevance

Measuring text similarity has a long history in NLP and information retrieval (Robert-
son et al. 1995). More recently, much effort has been focusing on assessing the
similarity of sentences or short texts. Early methods are based on word overlap (Met-
zler et al. 2005) and bag-of-wordsmodel incorporating external knowledge sources (Li
et al. 2006; Achananuparp et al. 2008, 2009). Word or n-gram overlap-based methods
(Papineni et al. 2002; Lin 2004) are commonly used in NLP evaluations thanks to their
computational efficiency and strong correlation with human perception of similarity.
Over the years, a learning-based approach, including deep-learning-based (He et al.
2015; Mueller and Thyagarajan 2016; Peng et al. 2020), word moving distance-based
(Kusner et al. 2015; Huang et al. 2016), and embeddings-based methods (Le and
Mikolov 2014; Kenter and De Rijke 2015; Kiros et al. 2015; Arora et al. 2017; Zhang
et al. 2020; Sellam et al. 2020; Sun et al. 2022), has gained much attention due to an
effective use of growing number of large datasets to pre-compute/pre-train models.

In the recommender systems research, computing similarity of items or users is a
long-standing task at the core of several recommender systems’ mechanics. Firstly,
item-based collaborative filtering (CF) recommender systems (Sarwar et al. 2001)
normally compute item similarity from the ratings or interactions data when per-
forming a k-nearest neighbors (k-NN) algorithm to predict item ratings. Secondly,
content-based (CB) recommender systems (Lops et al. 2011) typically utilize the TF-
IDF weighted vector-space model and other information retrieval methods for item
similarity computation. The CB similarity has also been incorporated into CF recom-
mender systems to improve the recommendation performance (Melville et al. 2002).
Next, past research has shown strong correlation between content-based similarity
scores and human judgments of item similarity in the respective domains, such as
similar movies recommendation (Colucci et al. 2016; Yao and Harper 2018; Trattner
and Jannach 2020) and similar cooking recipes recommendation (Trattner and Jannach
2020).

Motivated by the assumption that some rejected or non-interacted items in the
recommendations are more valuable than others (Lacic et al. 2019; Frumerman et al.
2019; Sánchez and Bellogín 2019), recent research has explored how non-binary
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relevance can be incorporated into the offline evaluation of top-n recommendations.
Specifically, partially relevant items are defined as those with non-zero similarity
scores, compared to ground truth. For item similarity computation, a few non-binary
relevance-based evaluation metrics have been proposed, including CB (Lacic et al.
2019; Frumerman et al. 2019; Sánchez and Bellogín 2019) and CF-based (Frumerman
et al. 2019) approaches. By analyzing the user-item interaction data (e.g., item clicks),
the CB similarity metrics has been shown to have a stronger correlation with the
number of item clicks than the CF-based similarity and the standard precision metrics
(Frumerman et al. 2019). Two recent CB item similarity methods include a doc2vec
(Le andMikolov 2014) embedding-based cosine similarity method (Lacic et al. 2019)
and attribute-based item similarity methods (Frumerman et al. 2019; Sánchez and
Bellogín 2019) incorporating the exact matching of item attributes (Brilhante et al.
2013; He et al. 2017), such as job titles, movie genre, venue categories, etc.

2.3 Comparison with previous work

Our work shares some commonalities and differences to previous work on the non-
binary relevance assessment in the recommender systems evaluation, especially Lacic
et al. (2019); Frumerman et al. (2019) and Sánchez and Bellogín (2019). Firstly, our
research is motivated by the similar assumption as theirs in that partially relevant
recommendations could still be useful in the offline evaluations. We, however, focus
on the next-basket recommendation evaluation, whereas prior work examined the top-
n recommendation evaluation. Thus, the units of recommendation are different, i.e.,
baskets versus items.

Next, our proposednon-binary-basedmetrics are directly built on the previouswork,
incorporating content-based approaches such as embedding-based (Lacic et al. 2019)
and item-attribute-based item similarity metrics. Unlike Lacic et al.’s simple adoption
of the doc2vec model for tag similarity, we adapt and extend various NLP-based
metrics, such as BLEU (Papineni et al. 2002), ROUGE (Lin 2004), and BERTScore
(Zhang et al. 2020), for basket similarity computation.

Our proposed hierarchical evaluation metric is conceptually similar to the attribute-
based metrics in Frumerman et al. and Sánchez and Bellogín as both methods
proportionately compare the overlap between item attributes or categories. Neverthe-
less, ours does not require specific item attributes to bemanually selected andweighted
for the similarity computation. Furthermore, we also explore a hybrid approach which
combines NLP-based and hierarchical evaluation metrics in determining item simi-
larity. Lastly, none of the previous work has directly evaluated their metrics against
human judgments of similarity and preference for recommendations, which is crucial
in gauging their validity.

In terms of online evaluation methods, ours and Shao et al. (2021) are among the
earliest studies which utilize both offline and online experiments to validate NBR
algorithms. Although Shao et al. (2021) has recently conducted an online user study
for NBR, their course recommendation domain is drastically different frommost NBR
problems in grocery shopping (Rendle et al. 2010;Wang et al. 2015), food consumption
(Bharadhwaj et al. 2018; Liu et al. 2019), andmusic listening (Chen et al. 2012; Hidasi

123



Non-binary evaluation of next-basket food recommendation

Table 1 Dataset statistics

#users #items #transactions density #baskets #items per user basket size %repeat consumption

6,916 47,789 2,260,319 0.23% 414,874 107.68 ± 79.8 5.45 ± 3.39 55.69% ± 18.77%

et al. 2015) which are commonly characterized by the dynamics of repeat and novel
consumptions.

3 Dataset, algorithms, and evaluationmetrics

We begin by introducing the materials used in this study, including the dataset, algo-
rithms, and evaluation metrics, in Sects. 3.1, 3.2, and 3.3, respectively.

3.1 Dataset

In this study, we utilize a public food diary dataset MyFitnessPal (MFP) (Weber and
Achananuparp 2016), consisting of 587K food diaries logged by 9.9K users over a
6-month period. Each food diary can been seen as a basket of food items representing
daily food intake of each user. Each food item consists of a textual description and
is automatically annotated with one or more categorical tags from a tag hierarchy
using a keyword matching method (Weber and Achananuparp 2016). For example,
the annotated hierarchical tag, fruit → tropical → banana, shows that the food item
is given fruit as the first-level tag, followed by tropical as the second-level tag, and
followed by banana as the third-level tag. In total, there are 19 first-level tags, 85 s-
level tags, and 1,263 third-level tags in the hierarchy. Since an item can be associated
with multiple tags at the same level of tag hierarchy, the dataset contains 17K tag
combinations for the 47K items where a tag combination is a unique set of all tags
assigned to an item. For example, the following items ‘classic tuna sandwich’ and
‘sandwich with tuna spread’ share the same tag combination {staple → wheat →
bread, meat → fish → tuna}. Given its textual contents and large hierarchy of tags,
MFP is an ideal dataset for our study.

We followed the same data cleaning procedures used in Liu et al. (2019). Specif-
ically, we performed p-core filtering by recursively removing: (1) items that were
adopted by less than 20 users; (2) users who adopted less than 5 remaining items; and
(3) users who recorded no more than 2 days of food diaries. After data preprocessing,
the dataset statistics, including mean ± standard deviation, are described in Table 1.
As we can see, the dataset is highly sparse and contains a large degree of repeat con-
sumption, which are common characteristics of many NBR datasets (Wan et al. 2018;
Kotzias et al. 2019; Li et al. 2021). Repeat consumption occurs when a user adopted
the same item more than once.
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Table 2 List of symbols

Symbols Description

U set of users, {u1, u2,..., ui ,..., u|U | }
V set of items, {v1, v2,..., v j ,..., v|V | }
G(i) ground truth basket of ui

RecList(i, k) top-k recommended items for ui

rank(i, j) rank of v j in the recommended basket for ui

γ n hyperparameter weight of n-gram precision in BLEU-N

pn( j ′| j) n-gram precision of items j ′ with respect to j

Tn( j) list of n-gram tokens extracted from v j ’s content

w j tokenized word vectors of v j ’s content

C j set of tags associated with v j

λt importance of tag ct

h weight ratio of a child node to its parent node

3.2 Recommendation algorithms

The next-basket (NBR) food recommendation task involves predicting a basket of
food items (also referred to as meals) the user is likely to consume next given his/her
past food intake data. In this study, a basket consists of food items consumed in a
whole day across all meal occasions (e.g., breakfast, lunch, etc.). To generate next-
meal recommendations for the user studies, we select a few state-of-the-art (SOTA)
NBR algorithms as well as commonly used baseline methods in related tasks, such as
session-based recommendation and top-n recommendation. These algorithms cover
four diverse modeling approaches, sufficiently reflecting the NBR research land-
scape: (1) naive non-personalized baselines, (2) repeat-consumption aware algorithms
incorporating the dynamics of repeat and novel item adoption, (3) standard latent
factor-based item recommendation algorithms, and (4) sequential basket recommen-
dation algorithms. All algorithms produce top-k recommended items as baskets. For
convenience, all mathematical symbols and notations used in this section as well as
subsequent sections are presented in Table 2.
Naive non-personalized algorithms. Two naive non-personalized baselines that uti-
lize simple heuristics include:

• Random: A random baseline where each item v j is assigned a random score for
each user ui . The k items with highest scores will be returned as the recommended
basket.

• Global: Global popularity is a commonly used naive baseline for top-k recom-
mendation tasks (Rendle et al. 2009) and has been shown to perform well on
some datasets (Dacrema et al. 2019). Each item v j is assigned a score propor-
tional to its global adoption frequency n j in the training (and validation) set. The
recommended basket consists of k items with the highest frequencies.

Repeat consumption-aware algorithms. Four algorithms that specifically model the
dynamics of repeat novel consumption of individual users over time are:
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• Personal: Personal popularity is a naive personalized algorithm which simply
recommends for a user ui k items with the highest adoption frequencies in ui ’s
past history, i.e., a repeat consumptiononly recommendation. Similar toGlobal, the
Personal baseline can perform very competitively in many item recommendation
datasets (Dacrema et al. 2019).

• Mixture: Multinomial mixture model (Kotzias et al. 2019) is an exploration–
exploitation-based mixture model that predicts the likelihood user ui adopts item
v j by balancing the trade-off between the novel and repeat consumptions. It sub-
stantially outperformed the matrix factorization and global popularity baselines
on the online forum posts, songs, and check-ins datasets (Kotzias et al. 2019).

• MixtureTW: Time-weighted multinomial mixture model (Liu et al. 2019) is a
simple extension to Mixture (Kotzias et al. 2019) in which adoption frequency is
discounted with an exponential time decay. It achieved the state-of-the art (SOTA)
performance in next-meal recommendation on the MFP dataset, outperforming
the original Mixture, matrix factorization-based, and popularity-based baselines
(Liu et al. 2019).

• adaLoyal: Triple2vec + adaLoyal (Wan et al. 2018) is an embedding-based repre-
sentation learningmethod and a recommendation algorithm that balance the repeat
consumption with user preferences by explicitly modeling items complementar-
ity, compatibility, and loyalty. It attained the SOTA performance on the grocery
shopping datasets over the embedding-based and popularity-based baselines at the
time of its publication (Wan et al. 2018).

Latent factor-based algorithms. We include four latent factor-based algorithms
which learn latent factors of user-item interactions to infer user preferences for general
top-n recommendations:

• NMF: Non-negative matrix factorization (Lee and Seung 2000) is a popular latent
factor-based algorithm commonly recognized as a strong baseline in a variety of
recommendation tasks.

• BPR-MF: Bayesian personalized ranking (Rendle et al. 2010) is an extension of
NMF that uses pairwise ranking loss shown to be especially effective on recom-
mendation tasks with implicit feedback data.

• WRMF: Weighted regularized matrix factorization (Hu et al. 2008) is a matrix
factorization model that assigns weights on consumption frequency shown to be
highly effective on count data.

• LDA: Latent Dirichlet allocation is a well-known probabilistic topic model used
as a competitive baseline in several recommendation tasks (Gopalan et al. 2015;
Trattner and Elsweiler 2017; Kotzias et al. 2019).

Sequential recommendationalgorithms.Lastly,we chose two sequential recommender-
based algorithms which directly model a sequence of past adoptions/interactions
between users and items to generate personalized recommendation lists.

• FPMC: Factorized personalized Markov Chains (Rendle et al. 2010) is a classical
NBR method which combines both Markov chains and matrix factorization to
capture both short-term item-to-item transitions and long-term preferences in the
basket sequence data, respectively. It is generally recognized as a highly compet-
itive baseline in various settings.
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• SASRec: Self-attentive sequential recommendation model (Kang and McAuley
2018) is a self-attention (Vaswani et al. 2017)-based DNN model which is shown
to be highly effective in a session-based recommendation task. It sets a new SOTA
performance on the online shopping, online games, and movies recommendation
datasets, outperforming all other methods including DNN-based sequential rec-
ommenders, BPR-MF, FPMC, and popularity-based baseline (Kang andMcAuley
2018). To adapt the original SASRec to the NBR task, we applied max pooling
operations, similar to Wang et al. (2015), to create a basket representation from
item representations.

As we can see, the characteristics of item baskets recommended by different algo-
rithms may vary depending on how the historical baskets data are modeled. For
example, baskets generated by conventional top-k algorithms, such as Global, Per-
sonal, etc., consist of items selected individually and independently of one another,
whereas baskets generated by more sophisticated algorithms like adaLoyal contain
items with specific relationships to each other, e.g., complementarity.

3.3 Evaluationmetrics

We formally define all evaluation metrics used in this study, including (1) standard
binary-based metrics, (2) non-binary content-based metrics, and (3) non-binary hier-
archical evaluation metrics.

3.3.1 Standard binary-based evaluation metrics

Standard information retrieval-basedmetrics, such as recall, precision, and normalized
discounted cumulative gain (nDCG), are commonly used to evaluate algorithmic accu-
racy of the next-basket recommendation task based on binary relevance between the
top-k recommended items and ground truth items where k ∈ [1,∞). The commonly
used top-k metrics include recall@k, precision@k, and nDCG@k.

Firstly, recall@k measures the proportion of ground truth next-basket items
G(i) for user ui correctly recommended among the top-k recommendation items
RecList(i, k) as shown in Eq.1.

Recall@k = 1

|U |
∑

ui ∈U

|G(i) ∩ RecList(i, k)|
|G(i)| (1)

Secondly, precision@kmeasures the proportion of correctly recommended ground
truth items among the top-k recommended items as defined in Eq.2.

Precision@k = 1

|U |
∑

ui ∈U

|G(i) ∩ RecList(i, k)|
k

(2)

Lastly, nDCG@k is defined in Eq.3 as a discounted cumulative gain (DCG) of
items in RecList(i, k) normalized by the ideal DCG (IDCG), which is simply the
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DCG measure of the best ranking result (Järvelin and Kekäläinen 2002). nDCG is
found to have higher discriminative power than other metrics in evaluating top-n
recommendation algorithms (Valcarce et al. 2018).

nDCG@k = 1

|U |
∑

ui ∈U

nDCG@k(i) (3)

where

nDCG@k(i) = DCG@k(i)

IDCG@k(i)
(4)

DCG@k(i) =
∑

v j ∈G(i)∩RecList(i,k)

1

log2(rank(i, j) + 1)
(5)

rank(i, j) refers to the rank of item v j in RecList(i, k). The values of recall@k,
precision@k, and nDCG@k range from 0 to 1. The higher the score, the better the
recommendation accuracy.

3.3.2 Non-binary content-based evaluation metrics

In cases where textual contents of items (e.g., item name, description, etc.) are avail-
able, non-binary evaluation metrics can be defined based on the similarity between
items in the recommended and ground truth baskets. Following a standard notion of
relevance in information retrieval, the similarity scores can be used to represent non-
binary relevance between items. We consider both n-gram and embedding-based
approaches define content-based item similarity.

As any two items can have nonzero similarity score, it is important for a non-binary
content-based evaluation metric to find the best matched ground truth basket item
for each item in the recommended basket and ignore the non-best matched ones. We
call this the best matching principle and apply it to all the non-binary content-based
evaluation metrics. This principle is, however, only fair when we impose the same
basket size restriction (i.e., top-k recommended items) to all the recommendation
models, as performed in this work. In the following, we describe the n-gram and
embedding-based metrics.

N-gram-based metrics. Firstly, we utilize simple n-gram-based metrics, widely
used in various natural language processing (NLP) evaluations (e.g., machine transla-
tion, text summarization, and question answering). These metrics include Bilingual
Evaluation Understudy Score (BLEU) (Papineni et al. 2002) and Recall-Oriented
Understudy for Gisting Evaluation (ROUGE) (Lin 2004). These metrics have tra-
ditionally been shown to correlate well with human judgements; however, they have
not been utilized in the next-basket food recommendation evaluation.

We define BLEU-N@k for the predicted basket with top-k recommended items
as shown in Eq.6 where N is the length of n-gram of item content used in matching
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recommended and ground truth items.

BLEU-N@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

BLEU-N( j ′| j) (6)

where

BLEU-N( j ′| j) = exp(
N∑

n=1

γ n log pn( j ′| j)) (7)

pn( j ′| j) = |Tn( j ′)
⋂

Tn( j)|
|Tn( j ′)| (8)

We ignore the brevity penalty in Eq.7, typically used in the original formulation
(Papineni et al. 2002)when evaluatingmachine translationmodels, as there is no reason
to penalize short n-grams (e.g., number of words) when comparing item contents. By
default, the BLEUmetric calculates the cumulative 4-gram BLEU score by geometric
mean (i.e., N=4), with uniform weight γ n = 1/N for n-gram precision in BLEU-N.
However, if there is no overlap between predicted and ground truth items’ content
4-grams, BLEU-4 score will be zero. In our context, since the length of item content
tokens to be matched (e.g., word tokens in item names and descriptions) is generally
short, we only consider N=1 (γ 1 = 1) and N=2 (γ 1 = γ 2 = 0.5) variants, and
correspondingly BLEU-1@k and BLEU-2@k, respectively. In this metric definition,
BLEU-N( j ′| j) returns matching score of a predicted item v j ′ given a ground truth
item v j . Based on the best matching principle, we select the best matching ground
truth item for each predicted item.

The definition of ROUGE-N@k is shown in Eq.9. In this work, we use N=1, 2, and
L variants of ROUGE. While ROUGE-1 and ROUGE-2 are about evaluating content
recall at the unigram and bigram levels, the ROUGE-L variant measures the recall of
longest common subsequence between the textual contents of a recommended item
with respect to a ground truth item. The values of BLEU@k and ROUGE@k range
from 0 to 1. The higher the score, the more similar the items.

ROUGE-N@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

ROUGE-N( j ′| j) (9)

where

ROUGE-N( j ′| j) = |Tn( j ′)
⋂

Tn( j)|
|Tn( j)| (10)

Embedding-basedmetrics.Next,we explore an embedding-basedmetricBERTScore
(Zhang et al. 2020), which considers item’s content semantics as defined by their word
embeddings from a large pre-trained language model BERT (Devlin et al. 2018), as
another content-based evaluation metric. One major advantage of BERTscores over
the n-gram-based metrics is that it is able to measure semantic similarity between
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items even if they share no common tokens as each token will be represented by its
word embedding. It has recently been shown that BERTScore correlates better with
human judgements than BLEU and ROUGE in many NLP tasks, but its effectiveness
has not been investigated in the next-basket food recommendation domain.

Therefore,wepropose the following top-k evaluationmetrics:PBERT@k,RBERT@k,
and F1BERT@k as defined in Eqs. 11, 12, and 13, respectively. Their values are from
-1 (most dissimilar) to 1 (most similar). In this work, we used BERTScore with a
default RoBERTa (Liu et al. 2019) large model for English language.

PB E RT@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

PBERT( j ′| j) (11)

RB E RT@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

RBERT( j ′| j) (12)

F1B E RT@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

F1BERT( j ′| j) (13)

where

P B E RT ( j ′| j) = 1

|w′
j |

∑

w′
jl∈w′

j

max
w jk∈w j

w
ᵀ
jk · w′

jl (14)

R B E RT ( j ′| j) = 1

|w j |
∑

w jk∈w j

max
w′

jl∈w′
j

w
ᵀ
jk · w′

jl (15)

F1 B E RT ( j ′| j) = 2
PB E RT ( j ′| j) · RB E RT ( j ′| j)

PB E RT ( j ′| j) + RB E RT ( j ′| j)
(16)

3.3.3 Non-binary hierarchical evaluation metrics

In addition to the non-binary content-based evaluation metrics, we propose new hier-
archical evaluation metrics that exploit the hierarchy of item attributes, categories, or
tags to determine the similarity between item baskets in the next-basket food recom-
mendation task. Specifically, the proposed hierarchical evaluation metrics are inspired
by the hierarchical F1 measure in the text classification evaluation (Kiritchenko et al.
2005).

We first define a recall-oriented hierarchical matching function of a recommended
item v j ′ given a ground truth item v j . Let the set of tags of item v j be C j , and the
importance of a tag ct ∈ C j be λt . The hierarchical matching is:

hMatch-λ( j ′| j) =
∑

ct ∈(C j ′∩C j )
λt

∑
ct ∈C j

λt
(17)

Various weighting schemes for the parameter λt can be incorporated. In this work,
we define a weighting scheme based on the tag’s level in the hierarchy, e.g., λt = 1 if
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t is at the root level, and λt = h · λtp if t is the child of tag tp. We experiment with
h ∈ {1, 2} in this study and hence the variants hMatch-1 and hMatch-2, respectively.
Alternatively,we also explore an inverse document frequency (IDF)-like schemewhich
assigns the importance of each tag t based on its rarity. This variant of hMatch-λ is
denoted by hMatch-IDF.

We then propose hierarchical precision (hP-˘@k) and hierarchical recall (hR-
˘@k) for predicted baskets with top-k recommended items for all users:

hP-λ@k = 1

|U |
∑

ui ∈U

Avgv j ′ ∈RecList(i,k) max
v j ∈G(i)

hMatch-λ( j ′| j) (18)

hR-λ@k = 1

|U |
∑

ui ∈U

Avgv j ∈G(i) max
v j ′ ∈RecList(i,k)

hMatch-λ( j ′| j) (19)

Again, we apply the best matching principle to hP-λ@k to allow each predicted
basket item to be matched with the most similar ground truth basket item, and to
hR-λ@k to allow each ground truth basket item to be matched with the most similar
predicted basket item, respectively. The values of hP-λ@k and hR-λ@k range from 0
to 1. The higher the score, the more similar the items.

3.3.4 Non-binary hybrid hierarchical and content-based metrics

Next, we propose a hybrid extension of the hierarchical evaluation metric which
incorporates the tag-level content similarity in the evaluation. We first introduce a
recall-oriented hierarchical matching function with tag-level similarity hMatchsim as
an extension to hMatch. Its generic form is defined as follows:

hMatchsim−λ( j ′| j) =
∑

ct ∈C j
λt · maxcs∈C j ′ sim(ct , cs)

∑
ct ∈C j

λt
(20)

Similarly, the corresponding hierarchical precision metric with tag-level similarity
and hierarchical recall metric with tag-level similarity are defined as:

hPsim−λ@k = 1

|U |
∑

ui ∈U

Avg j ′∈RecList(i,k) max
v j ∈G(i)

hMatchsim−λ( j ′| j) (21)

hRsim−λ@k = 1

|U |
∑

ui ∈U

Avgv j ∈G(i) max
v j ′ ∈RecList(i,k)

hMatchsim−λ( j ′| j) (22)

Different content-based similarity functions can be usedwhen realizing hMatchsim .
In this work, we utilize F1B E RT for measuring the content similarity of two tags t
and s, sim(ct , cs), due to its overall effectiveness in NLP tasks (Zhang et al. 2020). In
hPsim − λ@k, the best matching principle allows each item in the predicted basket to
be matched with the most similar ground truth basket item; in hRsim − λ@k, the best
matching principle allows each ground truth basket item to be matched with the most
similar predicted basket item, respectively.
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Table 3 Performance of
different algorithms with
standard metrics on a hold-out
MFP test set. Best results are in
boldface

Method Precision@10 Recall@10 nDCG@10

Random 0.000 0.000 0.000

Global 0.031 0.073 0.068

Personal 0.134 0.336 0.308

Mixture 0.135 0.339 0.311

MixtureTW 0.165 0.412 0.377

adaLoyal 0.127 0.317 0.279

NMF 0.061 0.155 0.166

BPR-MF 0.062 0.149 0.104

WRMF 0.054 0.128 0.106

LDA 0.031 0.077 0.070

FPMC 0.143 0.324 0.293

SASRec 0.113 0.285 0.268

3.4 Training the recommendationmodels

Weused theMFPdataset and the algorithms introduced in Sects. 3.1 and 3.2, respec-
tively, to train the next-basket recommendation models which were subsequently
employed in the user studies. We applied the following rules to split the MFP dataset
into train, validation, and test sets: (1) for users who have more than one baskets, their
most recent basket is used for testing; (2) for users who have more than two baskets,
their second-to-last basket is used for validation; and (3) the remaining baskets are
used for training. All models were trained to generate a top-k ranked list of unique
items as an item basket for recommendation based on a set of all items in the training
and validation set. Item baskets are treated as a set, i.e., items only appear once per
basket. Based on the dataset characteristics, we set k = 10. The hyperparameters
were tuned by optimizing the nDCG@10 metric in the validation set and the optimal
settings for each model are as follows:

• MixtureTW: Decay weight = 0.9
• adaLoyal: Number of latent factors = 500, initial product loyalty = 0.9
• NMF: Number of latent factors = 100
• BPR-MF: Number of latent factors = 500, number of epochs = 100
• WRMF: Number of latent factors = 50, number of epochs = 150, L2-norm regu-
larization coefficient = 0.01

• LDA: Number of latent factors = 50
• FPMC: Number of latent factors = 500, L2-norm regularization coefficient = 0.01,
learning rate = 0.01, number of epochs = 2

• SASRec: Default values per (Kang and McAuley 2018), e.g., number of hidden
units = 50, batch size = 128, learning rate = 0.001, number of epochs = 201, drop
rate = 0.5

• Random, Global, Personal, and Mixture have no hyperparameters.

The performance scores were reported on the hold-out test set as shown in Table 3.
MixtureTW is the best overall performer on the precision, recall, and nDCG metrics.
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Table 4 Statistics of the user studies

Study I Study II (p1) Study II (p2)

Number of workers/participants 241 48 48

Number of item pairs/items judgments 7,240 2,400 5,458

Moreover, repeat consumption-aware algorithms, including a naive Personal baseline,
tend to perform better than the other algorithms across all metrics. The scores for the
Randombaseline are zerowhich is to be expected. Interestingly, themore sophisticated
algorithms such as adaLoyal, FPMC, and SASRec do not outperform the Personal
baseline inmost cases, except for FPMCwhich outperforms Personal and is the second
best algorithm on the precision metric.

4 User studies

To answer the research questions posed in Sect. 1, we conducted user studies I and
II (parts 1 and 2), described in Sects. 4.1 and 4.2, respectively. The first study aims
to collect non-personalized pairwise similarity judgments, whereas the second study
aims to collect user preference (part 1) and personalized pairwise similarity (part 2)
judgments. For ease of referencing, we summarize basic statistics of the two user
studies in Table 4.

4.1 Study I: basket-level item similarity survey

In study I, we formulated an item similarity evaluation to investigate howwell different
similarity scores, computed by the non-binary-based metrics, correspond to human
similarity judgments. We seek to obtain human similarity judgments for a k-item
recommended basket given an m-item ground truth basket from workers of an online
crowdsourcing platform Amazon Mechanical Turk (AMT).

This itembasket similarity judgment task is not trivial nor easy to performas annota-
tors are likely to experience an information overload if they were asked to exhaustively
compare allm×k item pairs, adversely affecting the quality of their decisions (Malho-
tra 1982). To overcome the problem, we propose a novel queuing-based task design for
efficient pairwise comparisons by decomposing basket comparison tasks into smaller
chunks and intervals (Jones and Kelly 2018). Specifically, each annotator only needs
to judge k item pairs at a time instead of m × k pairs. Then, pairwise judgments from
multiple annotators are aggregated to derive human similarity judgments for all item
pairs in the baskets. Figure2 displays a screenshot of the proposed human intelligent
task (HIT) conducted on the AMT platform. As we can see, each task consists of a
reference item v j (shown in boldface at the top of the screen) and a set of 10 candidate
items denoted by Fj . Workers were explicitly instructed that two items are similar
if they could replace each other in the same meal context (i.e., breakfast, lunch, or
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Fig. 2 Basket-level item similarity survey

dinner). Then, their task is to select up to three candidate items in Fj that are most
similar to the reference item v j .

We generated the data for the basket-level similarity HITs as follows. Given the
MFP dataset, a subset of 40 MFP users were randomly chosen. For each user ui ,
the items from the last basket consumed by him/her denoted by G(i) were used as
the reference items. Then, we combined the top-10 recommended items returned
by recommendation algorithms for the last basket into a positive candidate item set
PosList(i). That is, PosList(i) = ∪algo∈ASet,k=10RecListalgo(i, k) where ASet =
{Personal,MixtureTW,NMF,FPMC,SASRec}. An algorithm in ASet was selected for
each representative approach to the next-basket recommendation task and its relative
performance in the offline evaluation as outlined in Sect. 3.2. Then, each item in
G(i) was later used as a reference item v j , and Fj was assigned 8 candidate items
randomly selected from PosList(i) and 2 candidate items randomly selected from
V − PosList(i). Note that v j may also appear among the candidate items in Fj . A
HIT is formed by v j and Fj and is assigned to three AMT workers. As a result, 724
HITs were generated and used for collecting human judgments of 7,240 item pairs.
Out of these item pairs, 5,982 are unique.

For each reference item v j , we use n(v j ′ , v j ) and vote(v j ′ , v j ) to denote the number
of workers assigned to judge if v j ′ ∈ Fj is similar to v j and the number of them voting
v j ′ to be similar to v j , respectively. Majority voting strategy was used to obtain the
final human perceived similarity score:

Simhuman(v j ′ |v j ) =
{
1, if

vote(v j ′ ,v j )

n(v j ′ ,v j )
> 0.5

0, otherwise.
(23)

After aggregating all crowdsourced judgment data, 90.66% (5,423 out of 5,982)
of rated item pairs have Simhuman=0, whereas the remaining 9.34% (559 pairs) have
Simhuman=1. Among the 61 rated pairs that contain identical items, only one pair has
Simhuman=0. This shows that the workers are fairly attentive in performing the tasks.
It is worth noting that inter-rater reliability of the basket-based similarity task is low
according to theKrippendorf’s alpha score of 0.256, suggesting that identifying similar
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food items is highly subjective. Nevertheless, the human similarity judgments are still
useful in identifying the best similarity functions and the corresponding non-binary
evaluation metrics.

4.2 Study II: online next-basket recommendation evaluation

Study II was formulated as an online recommendation evaluation and conducted in a
two-part online personalized survey: the next-basket recommendation survey in part
1 and the personalized basket-level similarity survey in part 2. In the next-basket
recommendation survey, participants were asked to evaluate their own preference
for the recommended items in a food basket generated by different recommendation
algorithms, i.e., a within-subject design. After completing part 1, participants were
then asked to judge the similarity/substitutability between the actual (i.e., ground
truth) and recommended baskets of items. Unlike in study I, each item pair in study
II’s personalized basket-level similarity survey was rated by one annotator whose food
diary data were used to construct the item pairs in the survey. It should be noted that the
two-part survey was specifically structured to encourage participants to independently
use his/her own decision criteria in the preference judgments in part 1 without being
inadvertently primed or influenced by the item similarity criteria, which they were
asked to exercise later in part 2.

As we did not have access to a live next-basket food recommender system with
real and active users, we implemented an experimental pipeline that utilizes the public
MFP dataset (described in Sect. 3.1), the online food logging tool MyFitnessPal, and
the Amazon Mechanical Turk (AMT) to conduct the online user study. We aimed
to enroll 50 qualified participants, a suitable sample size for experimental research
(Delice 2010), from a pool of availableAMTworkers. The recruitmentwas done on the
AMTplatform andwas restricted toworkerswho resided in theUnited States (the same
geographical location as that of the majority of users in the MFP dataset). Interested
workers had to take a qualification task by answering 5 survey questions designed to
emulate the actual pairwise comparison tasks (see Sect. 4.2.2). The questions consist
of a combination of identical food item pairs and similar food item pairs and workers
were asked to assess their similarity by giving a rating from 1 (very dissimilar) to 5
(very similar). Workers who did not give a maximum rating to the identical pairs were
disqualified. Likewise, workers who gave a higher rating to item pairs with fewer or
no common textual features, e.g., (milk, pizza), than those with more common textual
features, e.g., (milk, chocolate milk), were not qualified. At the end of this recruitment
stage, 300 AMT workers successfully obtained the qualification to participate in the
next stage.

Then, the qualifiedworkerswere instructed to recall and log food items they recently
had in the past 3 days or longer using MyFitnessPal. The 3-day time window was
specifically chosen based on the finding in the previous work (Liu et al. 2019) as the
period likely to contain both repeat and novel consumptions. Moreover, they were
required to log at least 3 food items per day. 50 AMTworkers had fully complied with
the instructions and were successfully enrolled into the online study as participants
and allowed the research team to collect their food logging data. Later, data from 2
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Fig. 3 Data statistics from study II

participants, who had completed the study, were removed since they were from the
same MyFitnessPal account. Thus, we eventually used the data from 48 participants
for the analysis.

Figure 3a displays a histogram of ground truth basket sizes from all participants.
Most participants have 4–10 items in their ground truth baskets (mean = 7.6; S.D.
= 4.32), whereas only two participants, who have been using MyFitnessPal actively
prior to joining the study, have more than 20 items in their baskets. Figure3b shows
the distribution of the numbers of recording days of participants. The recording days
may need not be continuous and we only count the days with food baskets recorded.
Most participants have 3 to 4 recording days (mean = 6.1; S.D. = 10.13; median =
3.4). Two participants, who are active MyFitnessPal users, have logged food diaries
for more than 50 days in the past year.

4.2.1 Part 1: next-basket recommendation

In this part of the survey, each participant was asked to rate their preference for each
recommended item in the food item baskets. To generate the data for the study, we
used the NBR models trained and evaluated in the offline experiment to recommend
an item basket for the participants given their own food logging data. These users
comprise an online test set (Uonline). Similar to study I, we chose the same set of
representative algorithms ASet = {Personal, MixtureTW, NMF, FPMC, SASRec} to
to generate a basket of top-10 recommended food items for each participant. Each
model was trained and optimized following the procedures described in Sect. 3.4. For
each user ui ∈ Uonline, his/her actual basket of food items logged on the day the
participant joined the study (t) was used as the ground truth basket G(i) and the
remaining food logging data from days t − 1 onward were used as the test data. The
top-10 recommended food items from all selected recommendation algorithms ASet
for user ui is denoted as RecList(i) = ⋃

algo∈ASet RecListalgo(i, 10).
No later than 24h after the participant had joined the study, an online survey (shown

in Fig. 4a) was automatically created in Google Form and sent to the participant. The
24-hour limit was imposed to mimic the real-world user-system interactions manner
and ensure that the participant’s recall of his/her previous food choices was sufficiently
reliable. In the survey, each participant was asked to rate how likely he/shewas to adopt
the recommended food items on a scale of 1 (very unlikely) to 5 (very likely). In total,
the participant had to rate 50 items in RecListalgo(i, 10), grouped into five 10-item
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Fig. 4 Study II’s surveys

baskets, i.e., one for each algorithm in ASet . The ordering of baskets and items in the
survey was randomized to minimize the primacy effect. Moreover, algorithm names,
used as the basket’s titles, were also de-identified. 16.67%of all recommended items in
the survey (400 of 2,400) were actually consumed items from the ground truth baskets,
i.e., accepted items, whereas 83.33% of all recommended items (2,000 of 2,400) were
those retroactively recommended but not actually consumed, i.e., rejected (Frumerman
et al. 2019) or more precisely non-accepted items as the recommended items were
actually presented to the participants shortly after the real food consumption decisions
had been made. For convenience, the two terms, rejected and non-accepted, are used
interchangeably in the discussion.

Let r p
i (v j ) denote a preference rating of user ui for an item v j and μ

p
r (i) denote

a user-specific mean preference rating of ui over the 50 recommended items rated by
ui in the survey, defined as:

μ
p
r (i) = 1

50

∑

1≤k≤50

r p
i (vk)

Figure5a and 5b displays the distributions of preference ratings and user-specificmean
preference ratings from all participants, respectively. A vast majority of accepted items
were given a rating of 4 or higher (92% of all preference ratings and 86% of all
mean preference ratings), suggesting that the participants were quite attentive when
answering the survey questions. Interestingly, nearly two third (65%) of all rejected
items received a preference rating of 4 or higher. Similarly, 63% of all participants
tend to lean slightly toward adopting some rejected items as indicated by their user-
specific mean preference ratings of 3.0 to 4.0. The rating distributions suggest that
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Fig. 5 Distributions of preference ratings in the next-basket recommendation survey

some rejected items should not be treated as a complete failure when evaluating the
effectiveness of the recommendations.

4.2.2 Part 2: personalized basket-level similarity survey

In the second part of the study, each participant ui was instructed to assess the similarity
between item pairs randomly sampled from a pool of |G(i) × RecList(i)| item pairs
from the items he/she personally consumed (G(i)) and the ones recommended by the
algorithms (RecList(i)). To mitigate the information overload problem (Malhotra
1982), each participant was assigned on average approximately 100 item pairs to
judge. Note that five participants, who had taken part in an initial trial run, received a
much larger number of item pairs (145–370 pairs) than the other participants. Given
the item pairs data, we generated |G(i)| survey questions, each corresponding to a
ground truth item. In each question, the participant was asked to rate how likely each
of the recommended items can be used as a substituted item to the ground truth item
from 1 (very unlikely) to 5 (very likely). An example of basket-level similarity survey
questions is shown in Fig. 4b. Together with the next-basket recommendation survey
(part 1), the basket-level similarity survey was automatically generated in Google
Form and sent to the participant within the first 24h after he/she had joined the study.
In total, the participants rated 5,458 item pairs.

Let rs
i (v j , v j ′) denote a substitution rating of user ui for an item pair (v j , v j ′ ),

Si denote a set of all item pairs rated by ui , and μs
r (i) denote a user-specific mean

substitution rating of ui over all item pairs in Si , defined as:

μs
r (i) = 1

|Si |
∑

1≤k≤|Si |
rs

i (vk, vk′)

Figure 6a and 6b displays the distributions of item-pair substitution ratings and
user-specific mean substitution ratings from all participants, respectively. As we can
see, 2,516 item pairs (46.1%)were given a rating of 1 (very unlikely substitutes). Of all
item pairs, 75 pairs (1.37%) contain identical items, 92% of which were given a rating
of 4 or higher (69.33% having a rating of 5). This indicates that the participants were
reasonably attentive when performing the tasks. Next, most participants rated their
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Fig. 6 Distributions of item pair substitution ratings in the basket-level similarity survey

item pairs with an average rating below 3.0, whereas 11 of 48 (22.92%) participants
rated their item pairs with an average rating above 3.0.

5 Results and discussion

We present the analysis of the research data collected from the two user studies and
answer the main research questions in this section. For convenience, we abbreviate
the notations of all similarity measures and top-k evaluation metrics in this section,
e.g., BLEU-1( j ′| j) and BLEU-1@10 are abbreviated as BLEU-1 in the respective
contexts. To compute scores for all the content-based and hybrid metrics, we applied
basic preprocessing steps to the food item data, including converting text into lower
case and removing punctuation.

5.1 RQ1: How do different similarity metrics correspond to human similarity
perception of items?

Using the pairwise similarity judgments data from the study I, we computed the
Pearson’s correlation coefficients (denoted by ρ) between the human similarity judg-
ments (Simhuman) and the content-based and hierarchical item similarity scores for
all 5,982 pairs. Furthermore, we included a baseline identical function that assigns
simidentical(v j ′ |v j ) = 1 if v j and v j ′ are identical; otherwise simidentical(v j ′ |v j ) = 0.
The results are shown in Fig. 7a.

Overall, most hierarchical matching similarity metrics (hMatch-λ) correlate more
strongly with Simhuman than the other metrics. Specifically, the two best metrics
are hMatch-1 and hMatch-2; ρ(hMatch-1) = 0.4908 and ρ(hMatch-2) = 0.4795.
This suggests that the AMT workers may partially rely on some form of implicit
structured item semantics, as operationalized in hMatch-λ, when judging the simi-
larity of item pairs more than relying on the textual content cues alone. While the
hybrid hierarchical metrics hMatchsim-λ variants outperform most content-based and
embedding-based metrics on the correlations with human judgments, they did not
outperform the best hierarchical matching metrics, for example, ρ(hMatchsim-1) =
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Fig. 7 Pearson’s correlation scores between human judgments and different item similarity scores. All
correlation scores are statistically significant (p < 0.01)

0.4218 and ρ(hMatchsim-2) = 0.4184. Therefore, utilizing BERTscore for the tag-
level similarity component in hMatchsim-λ adversely affects its overall performance.

Among all content-based metrics, the n-gram-based similarity metrics generally
correlate more strongly with Simhuman than the embedding-based similarity metrics,
BLEU-1 being the metric with the highest correlation score (ρ(BLEU-1) = 0.4249) in
this group and the 3rd best similarity metric overall. Surprisingly, all three BERTScore
variants PB E RT , RB E RT , and F1B E RT perform poorly in this task even though it
has been shown that they outperform several similarity metrics, including n-gram-
based metrics, in many NLP tasks (Zhang et al. 2020). Their correlation coefficients
are slightly higher than that of the baseline identical metric; ρ(PB E RT ) = 0.3386,
ρ(RB E RT ) = 0.3434, ρ(F1B E RT ) = 0.3755, and ρ(identical) = 0.3104. Upon further
inspection, we found that BERTScore (with a pretrained RoBERTa large model) tends
to perform poorly given short food texts as inputs. For example, F1B E RT scores for
3 following item pairs (almond bars, cheese burger), (almond bars, roasted walnuts),
and (almond bars, hot coffee) are 0.2945, 0.2798, and 0.3133, respectively. However,
one would intuitively expect (almond bars, roasted walnuts) to have the highest score
among the three pairs instead of the lowest. This issue also likely explains the perfor-
mances of the hMatchsim-λ variants. Using BERTScore with a domain-specific BERT
model fine-tuned on a food-related dataset may help improve the performance though
we leave this to future work.

Next, results from the basket-level similarity survey in the study II, shown in Fig. 7b,
are more or less consistent with those of the study I. That is: (1) hMatch-1 and hMatch-
2 continue to correspond more closely to human judgments than the other metrics;
(2) most hMatchsim-λ variants are worse than hMatch-λ; and (3) most BERTScore
variants are worse than most n-gram-based metrics. Nevertheless, the correlation gap
of the best metric and the baseline identical metric is much smaller. Specifically, the
correlation score of hMatch-1 is 35.88% higher than that of identical (ρ(hMatch-1) =
0.2727 and ρ(identical) = 0.2007) in the study II, compared to 58.09% in the study I
(ρ(hMatch-1) = 0.4908 and ρ(identical) = 0.3104).

Since one of the main differences between the two studies is in the personalization
of similarity judgments, we surmise that it partly contributes to the differences in
the magnitude of the correlation coefficients. In particular, while the crowdsourced
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workers in the study I annotated each food item pair independent of the meal context
and personal preference (i.e., non-personalized similarity judgments), the participants
in the personalized basket-level similarity survey in the study II were expected to rely
fairly on their personal preference and subjectivity when judging the item pairs given
their own meal context (i.e., personalized similarity judgments). Thus, their similarity
judgment ratings may be less homogeneous than those of the study I.

Summary. The proposed hierarchical matching functions hMatch-λ most corre-
spond to human perception of item similarity, compared to the other similaritymetrics.
Themagnitude of correlations significantly decreases as the human judgments become
more personalized.

5.2 RQ2: How do different evaluationmetrics correspond to the real users’
preferences for item baskets?

With the preference ratings of 2,400 recommended items in 240 recommended baskets
(48 participants × 5 recommended baskets by the five algorithms in ASet) collected
in the next-basket recommendation survey, we examine the correlation coefficients
(denoted by ρ) between the basket-level preference ratings and the evaluation scores
computed for the recommended baskets. Let r p

j be a preference rating of a recom-
mended item v j in a basket l. For each recommended basket l, we calculated its basket
preference rating (denoted by μ

p
r (l)) from an arithmetic mean of preference ratings

r p
j of the items belonging to the basket as follows:

μ
p
r (l) = 1

|l|
∑

1≤ j≤|l|
r p

j

We also computed evaluation scores using the standard, n-gram-based, embedding-
based, hierarchical, and hybrid metrics for the recommended basket with respect to
the corresponding ground truth basket. Finally, we computed Pearson’s correlation
coefficients for all pairs of (basket preference ratings, evaluation scores).

The results are shown in Fig. 8. As we can see, all content-based metrics, i.e.,
BLEU-N, ROUGE-N, and BERTScore, consistently outperform the other metrics,
correlating most strongly with human preferences. Specifically, all three BERTScore
variants have higher correlation with basket preference ratings than the other metrics;
ρ(PB E RT ) = 0.5129, ρ(RB E RT ) = 0.4632, and ρ(F1B E RT ) = 0.5019. Surprisingly,
precision, which has the highest correlation among all standard metrics, corresponds
fairly well to the human preference ratings, ρ(precision) = 0.4438, even though it
simply relies on the exact matching comparison between ground truth and recom-
mended items. In contrast, all hierarchical and hybrid metrics do not correspond to
human preference judgments better than the standard metrics even though their under-
lying hMatch functions are shown in RQ1’s findings to correlate the most strongly
with human similarity judgments. Among them, the recall-based metrics, e.g., hR-1,
hRsim-1, etc., greatly outperform the precision-based metrics, e.g., hP-1, hPsim-1, etc.
All hPsim-λ variants have the lowest correlationwith the human preference judgments;
ρ(hPsim-1) = 0.1604, ρ(hPsim-2) = 0.1575, and ρ(hPsim-IDF) = 0.1497.

123



Non-binary evaluation of next-basket food recommendation

Fig. 8 Pearson’s correlation scores between basket preference ratings and different top-k evaluationmetrics.
All correlation scores are statistically significant (p < 0.05)

Table 5 Accuracy of the selected top-k metrics for each preference rating quartile (Q). Best results are in
bold face

Q Precision BLEU-2 PB E RT hR-2 hRsim -IDF

4 (most preferred baskets) 0.750 0.754 0.750 0.700 0.708

3 0.688 0.717 0.642 0.658 0.633

2 0.671 0.588 0.625 0.642 0.650

1 (least preferred baskets) 0.658 0.708 0.750 0.708 0.725

To better understand these results, we further examine the behaviors of selected
evaluation metrics, especially in their effectiveness in distinguishing between highly
preferred and less preferred baskets. That is, an ideal evaluation metric should assign
proportionately high scores to highly preferred baskets, i.e, those with high prefer-
ence ratings, and proportionately low scores to less preferred baskets, i.e., those with
low preference ratings, most of the time. To characterize the performance metrics
in this manner, we conducted a classification-based analysis. First, we chose five
top-performing metrics from each group, i.e., precision, BLEU-2, PB E RT , hR-2, and
hRsim-IDF for comparison. Then, we split the preference ratings and evaluation scores
into their respective quartiles for all 240 baskets. Baskets whose preference scores are
in the top-25% (Q4;μp

r (l) = 5; N = 56) are consideredmost preferred baskets, whereas
those whose preference ratings are in the bottom-25% (Q1; μp

r (l) ≤ 3.3; N = 62) are
considered least preferred baskets. Next, for each of the selected metrics, we con-
structed a confusionmatrix formulti-class classificationwhere the actual and predicted
classes comprise the quartiles of the preference ratings and evaluation scores, respec-
tively. A true positive (TP) case is met if the quartile of the preference rating of an item
basket is the same as the quartile of the corresponding evaluation score. Similar logic is
applied to false positive (FP), false negative (FN) and true negative (TN) cases. Then,
from the confusionmatrix,we computed accuracy ((TP+TN)/(TP+TN+FP+FN)), false
positive rate (FP/(FP+TN)), and false negative rate (FN/(FN+TP)) for all preference
rating quartiles.
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The results are displayed in Tables 5 and 6. Firstly, according to the accuracy
scores, Precision, BLEU-2, and PB E RT are equally effective at assessing most pre-
ferred (Q4) baskets, whereas hR-2 and hRsim-IDF are relatively less effective than
the other metrics, notably due to having much higher false positive rates than the
other three metrics. Secondly, all non-binary-based metrics are more accurate than
the Precision metric in measuring least preferred (Q1) baskets. In particular, the false
positive rate of Precision in measuring Q1 baskets is 0.354, 85.29% higher than that
of PB E RT . Lastly, the accuracy of all metrics decreases when quantifying mid-range
(Q2 and Q3) baskets. Within these groups of baskets, Precision and BLEU-2 tend to
be more effective than PB E RT , hR-2, and hRsim-IDF.

Summary. Most non-binary-based top-k metrics, especially the n-gram and
embedding-based metrics, correspond more closely to human preference judgments
than the standard metrics. Among those, PB E RT attains the highest correlation coeffi-
cient (ρ(PB E RT ) = 0.5129).Most hierarchical andhybridmetrics correlatemore poorly
with human preference judgments than the other non-binarymetrics and some standard
metrics, i.e., precision and nDCG, despite the fact that their underlying similarity func-
tions hMatch-λ correlate the strongest with human similarity judgments. Particularly,
combining hierarchical matching with BERTScore adversely affects the discrimina-
tive power of bothmetrics against the user preference judgments. The personalized and
preferential nature of the recommendation tasks may explain the differences. Lastly,
all top-performing metrics are equally accurate in measuring highly preferred baskets.
However, the precision metric is less accurate in measuring least preferred baskets
than the non-binary-based counterparts.

5.3 RQ3: To what extent do user preferences for item baskets differ across
different NBR algorithms?

In the next-basket recommendation survey, we collect from each participant a pref-
erence rating (from 1 to 5) for each of the top-10 recommended items by each of
the five algorithms in ASet = {Personal, MixtureTW, NMF, FPMC, SASRec}. Given
an algorithm algo, we use r p

i (v j ) to denote the preference rating from user ui on
each item v j in RecListalgo(i, 10). We then derive the preference rating of user ui on
algorithm algo by

r p
i (algo) = 1

10

∑

v j ∈RecListalgo(i,10)

r p
i (v j )

By ordering the algorithms in ASet by user preference ratings, we obtain the algo-
rithm rank rank p(ui , algo). Formally, rank p(ui , algo) is defined as rank p(ui , algo) =
|{algo′ : r p

i (algo′) ≥ r p
i (algo), algo′ ∈ ASet}|. When ui gives the highest prefer-

ence ratings to the algorithm algo, rank p(ui , algo) = 1. Then, themean preference
ranking of algorithm algo, denoted by rank p(algo), is defined by

rank p(algo) = 1

|U |
∑

ui ∈U

rank p(ui , algo).
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Table 7 Mean preference
rankings of the selected
algorithms. Lower is better

Personal MixtureTW NMF FPMC SASRec

1.90 1.44 3.52 3.88 3.44

As shown in Table 7, the basket recommendations of MixtureTW achieve the best
mean preference ranking (1.44), whereas those of FPMC receive the worst mean
preference ranking (3.88). Next, the Kruskal–Wallis test suggests that the median
of preference rankings of the five algorithms are statistically different (p <0.05).
Specifically, the post hoc multiple comparison tests using Dunn’s test with Bonferroni
correction show six paired comparisonswhich are statistically different, i.e., (Personal,
NMF), (Personal, FPMC), (Personal, SASRec), (MixtureTW, NMF), (MixtureTW,
FPMC), and (MixtureTW, SASRec). There are no differences in the mean preference
rankings between MixtureTW and Personal, or among NMF, FPMC, and SASRec.

As we can see in Table 1, more than 50% of food consumptions in the MFP dataset
consist of repeat consumptions. The main contributor to the results is therefore due
to the effectiveness of the two repeat consumption-aware algorithms (i.e., Personal
and MixtureTW) in recommending items the participants were likely to consume
again. Specifically, since the result of Personal does not differ statistically from that
of MixtureTW, we could attribute the success of both methods virtually to the repeat
items recommendation over the novel items recommendation. In contrast, the more
sophisticated sequence-aware algorithms (i.e., FPMC and SASRec), which learn to
predict next baskets from the past sequences of baskets, were not able to effectively
capture the dynamics of repeat-novel consumptions in the basket data.

Summary Among the five representative algorithms, most participants prefer item
baskets recommended by MixtureTW and Personal over SASRec, NMF, and FPMC.
The findings call to attention the challenge of the next-basket food recommenda-
tion task in which item baskets recommended by relatively simpler methods, such
as Personal and MixtureTW, are generally more preferred by real users than those
recommended by more sophisticated methods, such as FPMC and SASRec.

5.4 RQ4:What is the offline performance of different NBR algorithms asmeasured
by the non-binary evaluationmetrics?

Using the same trainedmodels, predicted baskets, and test set described in Sect. 3.4,
we computed performance scores using the selected representative evaluation metrics
which were found in RQ2 to strongly correlate with human preference judgments, i.e.,
precision, BLEU-2, PB E RT , hR-2, and hRsim-IDF, for all 12 recommender algorithms.
The offline evaluation results are shown in Table 8. Firstly, MixtureTW performs
the best among all the algorithms across all metrics, whereas the random baseline
performs the worst in all metrics except for hRsim-IDF. Secondly, the latent factor-
based algorithms consistently perform at the bottom-50% across all metrics. Thirdly,
the relative performances of certain algorithms are judged differently by precision
compared to those by PB E RT . For example, the Personal baseline under-performs by
2 ranks, whereas FPMC and BPR-MF over-perform by 2 ranks when comparing the
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Fig. 9 Spearman’s correlation
scores between human
preferences and top-k evaluation
metrics

rankings from precision versus PB E RT . Interestingly, hRsim-IDF is the only metric
that greatly overestimates the performance of the Random baseline, which highlights
its drawback as a reliable evaluation metric.

Next, using the preference rankings of the 5 representative algorithms from the user
study II as ground truth (i.e., rank(MixtureTW) = 1, rank(Personal) = 2, rank(SASRec)
= 3, rank(NMF) = 4, and rank(FPMC)=5), we computed Spearman’s rank correlation
scores (ρs) between the ground truth rankings and the rankings from the corresponding
metrics in Table 8. As shown in Fig. 9, the rankings from PB E RT and hR-2 corre-
spond more closely to the human preferences ranking than those from other metrics;
ρs(PB E RT )=0.7285, ρs(hR-2)=0.6822, ρs(BLEU-2)=0.4243, ρs(precision)=0.3313,
and ρs(hRsim-IDF)=0.2761. Note that due to a very small sample size (the number of
NBR algorithms being ranked), ρs are not statistically significant (p > 0.05). Never-
theless, the correlation scores still provide a useful and reliable measurement of the
similarity between the preference rankings (Fagin et al. 2003).

Summary: MixtureTW is the top performing algorithm across all metrics in the
offline experiment.When comparing against human judgments of selected algorithms,
PB E RT and hR-2 produce the performance rankings that correspond most closely to
the ground truth ranking obtained from the study participants in the online user study.
Overall, the offline performance assessment from the non-binary metrics is more
consistent with the online experiment performance than that of the standard binary-
based metrics.

6 Limitations and future directions

We acknowledge a few limitations in our research and discuss potential directions for
future research in the followings.

6.1 Generalizability to other NBR domains

Although this study focuses solely on the next-meal recommendation in the food
consumption domain, we believe the results of the offline evaluation are generally
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applicable to other NBR domains, such as grocery shopping, music listening, etc.,
due to the characteristics of the consumption data commonly shared among them.
That is, the users in those domains tend to consume a collection of repeat and novel
items in a basket. According to the offline evaluation results conducted on three
other NBR datasets in appendix A, the repeat consumption-aware methods are the
most effective in the NBR tasks across all datasets and evaluation metrics. Further-
more, relatively simple algorithms, such as Personal andMixtureTW, outperformmore
sophisticated/deep-learning-based methods, such as adaLoyal, FPMC, and SASRec.
As the proportions of repeat consumption in the datasets are high, the overall NBR
performance tends to be dominated by the methods which perform better on the repeat
consumption task. The algorithmic performance may differ in other NBR domains
where repeat consumption is not as prevalent as the food consumption, grocery shop-
ping, and music listening domains.

6.2 Applicability of non-binarymetrics

The non-binary-based metrics proposed in this work, including the content-based and
hierarchical evaluation metrics, require the item data with textual contents and/or cat-
egorical descriptions to quantitatively assess the quality of the recommended baskets.
In some NBR datasets where such information is not available, it is not possible to
perform the non-binary relevance assessment of the recommendations. For demonstra-
tion, we have provided additional offline evaluation inwhich the non-binary evaluation
metrics were utilized with other NBR datasets in appendix A.

6.3 BERTScore and food-domain knowledge

The effectiveness of BERTScore in several NLP evaluation tasks is due in large part
to a massive amount of language and world knowledge contained in the pre-trained
BERT models. Nevertheless, the results from our item similarity user study show that
using a default RoBERTa model (Liu et al. 2019) with BERTScore is not an optimal
setup. To improve the discriminative power of BERTScore in evaluating the food item
similarity task, domain adaptation techniques (Rietzler et al. 2020; Ma et al. 2019)
can be used to better adapt the pre-trained BERT model. For instance, the pre-trained
weights of the default BERT model could further be fine-tuned on a large food and
recipe-specific corpus like Recipe1M+ (Marin et al. 2019) in a self-supervised manner
(i.e., pre-training). The fine-tuned food-domain BERT model could then replace the
defaultRoBERTa in BERTScore. Other knowledge infusion techniques for pre-trained
language models (He et al. 2020; Penha and Hauff 2020) could be explored to enrich
or inject BERT with the food-domain knowledge.

A few issues should also be taken into considerationwhenfine-tuningBERT. Firstly,
the fine-tuned BERT models have been shown to produce inconsistent performance
due to the instability during the fine-tuning process (Mosbach et al. 2020; Zhang
et al. 2020) and more systematic studies (Ganesan et al. 2021) are still needed to
investigate the causes of the fine-tuning instability. Future research should carefully
consider the issue and empirically evaluate how different fine-tuning methods affect
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the performance of the fine-tuned BERTmodels in the food item similarity task. Next,
an optimally fine-tuned BERTScore metric could potentially achieve a human-level
performance in the item similarity task; however, the state-of-the-art performance
likely comes at the expense of a significant increase in computational cost. In some
cases, the trade-off between performance and computational cost may result in up
to 100 times more training time to optimize a fine-tuned BERT-based metric than
conventional non-BERT-based metrics (Mayfield and Black 2020). Therefore, the
opportunity cost of fine-tuning BERT should be taken into account as a matter of
practicality, especially in an environment with limited computing resources.

6.4 Assessment of basket qualities

All non-binary-based evaluation metrics proposed and investigated in this research are
operationalized based on the best matching principle in which a basket-level perfor-
mance score is aggregated frommultiple comparisons between individual items in the
recommended basket and those in the ground truth basket. There are a few advantages
for this approach. Firstly, the metrics are computationally efficient due to the aggrega-
tion operation. Next, they generally follow the offline evaluation paradigm, in which
the recommendations are compared against the ground truths, and are therefore easy
to understand. Moreover, since they do not incorporate any domain-specific qualities
into the assessment, they can be applied to other NBR domains.

On the other hand, our proposed non-binary-based metrics, which are accuracy-
oriented, are not designed to measure other domain-specific characteristics of the
recommendations in the food consumption and related NBR domains (e.g., grocery
shopping). Specifically, since baskets/meals typically comprise food items which are
meant to be consumed together, one could reasonably assume that users are likely
to prefer recommended baskets with more complementary items to those with fewer
complementary items. For example, a user who prefers balanced diet may be more
satisfied with a meal recommendation of {steak, pasta, salad} (more complementary)
than a recommendation of {steak, pork chop, chicken wings} (less complementary).
Following the non-accuracymetrics in recommender systems research (Ge et al. 2010),
future work should incorporate the within-basket item relationships, such as comple-
mentarity and substitutability (Achananuparp andWeber 2016), in theNBR evaluation
beyond accuracy.

6.5 User studies

The environments of our user studies may differ from the environments of live rec-
ommender systems where users are free to interact with the recommendations. Even
though we have tried to mimic the production recommender systems in the user study,
i.e., by generating and presenting personalized basket recommendations to the partic-
ipant as soon as he/she has submitted their past meal history, user perceptions of the
recommendations in a controlled environment may still not necessarily be the same
as those in a live environment.
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Our online user study was conducted in the next-meal recommendation. To further
examine how the non-binary evaluation paradigm can generalize to other application
domains, future research could consider conducting online evaluations and user studies
in related NBR domains, such as grocery shopping. Lastly, stronger evidence from
future larger-scale longitudinal user studies (Achananuparp et al. 2018; Hauptmann
et al. 2021) that captures the temporal food consumption patterns (e.g., weekdays vs.
weekends) (Liu et al. 2019) could help further validate our research findings.

6.6 Quality of research data

Lastly, we collected the food consumption data and survey responses from qualified
crowdworkers. Therefore, the data quality in the recommendation research may vary
(Musto et al. 2020; Trattner and Jannach 2020). Nevertheless, we believe that our
workers selection criteria, qualification test, attention check, and data verification
have sufficiently helped limit the validity risk.

7 Conclusion

This research aims to broaden knowledge on the evaluation of next-basket recom-
mendation (NBR) in the food recommendation domain. In particular, we investigated
the non-binary relevance assessment in measuring the quality of recommended item
baskets based on our claim that partial credits should be given to the recommended
baskets which share some similarity to the ground truth. We proposed various non-
binary-based metrics for item-level and basket-level measurements by adapting and
extending relevant similarity metrics used in the natural language processing (NLP)
and text classification research, including BLEU, ROUGE, BERTScore, and hierar-
chical evaluation metrics. Next, we validated the proposed non-binary-based metrics
using a large food diary dataset and several state-of-the-art NBR algorithms in the
online and offline experiments. Specifically, two user studies were conducted via the
Amazon Mechanical Turk platform to obtain human judgments of basket similarity
and preference.

We identified a few key findings from the experimental results. Firstly, among all
non-binary-based item similarity metrics, the hierarchical matching function hMatch-
λ correlates the most strongly with human judgments of item similarity. This indicates
its potential in the non-binary NBR evaluation. Secondly, the majority of non-binary-
based top-k metrics correlatemore stronglywith human preference judgments than the
binary-basedmetrics. Among the non-binary-basedmetrics, an embedding-basedmet-
ric PB E RT has the highest correlation with human preference judgments. Surprisingly,
most hierarchical evaluation metrics have lower correlations with human preference
judgments than the others even though they most strongly correlate with human judg-
ments of item similarity. Next, results from the online next-meal recommendation
user study show that the participants generally prefer the basket recommendations
from the repeat-consumption aware methods (MixtureTW and Personal) over the rec-
ommendations from the more sophisticated sequential recommendation algorithms
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(SASRec and FPMC). Lastly, according to the online and offline experiments, non-
binary evaluation metrics, such as PB E RT and hR-2, are more indicative of the online
experiment performance than precision, suggesting the validity of the non-binary rel-
evance assessment and the limitations of standard binary-based metrics in the offline
NBR evaluation.
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Appendix A: Results for other NBR domains

We conducted additional offline evaluation using three other grocery shopping and
music listening datasets commonly used in other NBR domains: Dunnhumby,1

Instacart,2 and LastFM.3

TheDunnhumby dataset contains offline household-level grocery transactions over
two years collected from around 2K households. The users are frequent shoppers with
an average shopping frequency of once per week. Each item has a unique ID and is
associated with one of the 27 departments (e.g., produce), one of the 249 descriptions
(e.g., tropical fruit), and one of the 1,138 specific descriptions (e.g., bananas). In the
p-core filtering, minuser and minitem are both 10.

The Instacart dataset was published by an online grocery service Instacart.com in
the United States. It contains over 3M grocery orders from more than 200K users.
Although the specific date of each order is not provided in the dataset, the sequence of
transactions by each user is preserved. Each item has a unique name and is associated
with one of the 21 departments (e.g., produce) and one of the 134 aisles (e.g., fresh
fruits). In the p-core filtering, minuser and minitem are both 20.

1 https://www.dunnhumby.com/sourcefiles.
2 https://www.instacart.com/datasets/grocery-shopping-2017.
3 http://www.cp.jku.at/datasets/LFM-1b/.
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The LastFM 1 Billion dataset (Schedl and Ferwerda 2017) contains 1B music
listening events. We focus on the 219,589 artists annotated with one or more tags
from the 20 genre tags (e.g., classical, electronic, etc.) from an online music portal
AllMusic.com. We define a transaction as a user listening to an artist and a new basket
for a user (i.e., listening session) is defined if the interval between consecutive songs
is greater than an hour. In the p-core filtering, minuser and minitem are both 10.

For all three datasets, we applied the same data preprocessing, experimental setup,
and protocols used in the main study as described in Sect. 3. After data preprocessing,
their basic statistics are described in Table 9. Similar to theMFP dataset, these datasets
are also highly sparse and contain a large degree of repeat consumption.

The performance scores were computed using nDCG@10 for the binary evaluation
metric and hR2-@10 and hR-1@10 for the non-binary evaluation metrics. All three
datasets contain relevant metadata such as category hierarchies and tags. However,
none of them contains the items’ full-text descriptions. Therefore, the only applicable
non-binary evaluation metric for the experiment is hierarchical evaluation metrics.
Specifically, we computed hR-2@10 for Dunnhumby and Instacart as both datasets
have a full category hierarchy, whereas we computed hR-1@10 for LastFM due to
a flat structure of tags. Both hR-2@10 and hR-1@10 have shown to correlate more
strongly with human judgments, compared to the other variants.

The results are shown in Table 10. Here, the effectiveness of different algorithms
NBR methods on the three other NBR datasets is generally similar to the results
from the main study. Specifically, the repeat consumption-aware methods, such as
Personal and MixtureTW, outperform the more sophisticated algorithms. In both the
Dunnhumby and Instacart datasets, MixtureTW is the best in terms of nDCG@10,
whereas Personal is the best in terms of hR-2@10. The performance difference
betweenMixtureTW and Personal is mainly due to a poor novel item recommendation
performance of MixtureTW, resulting in more irrelevant tags negatively affecting its
hR-2@10 scores. Next, for the Dunnhumby dataset, most latent factor-based algo-
rithms do not outperform the naive Global baseline in terms of nDCG@10. However,
their hR-2@10 scores are all higher than those of Global. This suggests that although
the items in the recommended baskets are not identical to the ones in the ground truth
baskets, their baskets share more commonality in terms of attributes and categories.

Next, the hierarchicalmetric scores for theLastFMdataset aremuch higher (ranging
from 0.734–0.94) than those of the other two datasets. This can be explained by the fact
that the number of tags in LastFM is much smaller (only 20 music genres) than those
of Dunnhumby and Instacart. Therefore, it is much more likely for the algorithms to
recommend one relevant tag and receive higher hierarchical evaluation scores (hR-
1@10) in the LastFM experiment. Even a naive Random baseline can recall over
73.4% of the tags.
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